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At least 30% of human proteins are thought to contain intrinsically disordered regions, which lack stable
structural conformation. Despite lacking enzymatic functions and having few protein domains,
disordered regions are functionally important for protein regulation and contain short linear motifs
(short peptide sequences involved in protein-protein interactions), but in most disordered regions, the
functional amino acid residues remain unknown. We searched for evolutionarily conserved sequences
within disordered regions according to the hypothesis that conservation would indicate functional resi-
dues. Using a phylogenetic hidden Markov model (phylo-HMM), we made accurate, specific predictions of
functional elements in disordered regions even when these elements are only two or three amino acids
long. Among the conserved sequences that we identified were previously known and newly identified
short linear motifs, and we experimentally verified key examples, including a motif that may mediate inter-
action between protein kinase Cbk1 and its substrates. We also observed that hub proteins, which interact
with many partners in a protein interaction network, are highly enriched in these conserved sequences.
Our analysis enabled the systematic identification of the functional residues in disordered regions and
suggested that at least 5% of amino acids in disordered regions are important for function.
ht
m

 

 on M

arch 18, 2021
tp://stke.sciencem

ag.org/
INTRODUCTION

Intrinsically disordered regions are regions that lack stable secondary
or tertiary conformation, and 30% of the human proteins are thought to
contain large contiguous disordered regions (1). These regions are found
in many disease-associated proteins, such as the tumor suppressor and
transcriptional regulator p53, the DNA repair protein BRCA1, and the
chloride channel cystic fibrosis transmembrane conductance regulator
(CFTR) (2–4). Although some of these regions contain recognizable do-
mains or become ordered upon binding (5, 6), most of these regions ap-
parently lack enzymatic activity or conserved protein domains that adopt
regular structures (7). Several models have been proposed for their func-
tion, including that they are important for (i) protein-protein interactions
(8), (ii) protein degradation (9), or (iii) posttranslational modifications that
control protein function (10). Indeed, disordered (or unstructured) regions
are particularly prevalent in proteins that exhibit many physical inter-
actions (11) and have been associated with the sites of posttranslational
modifications (12) [reviewed in (13)]. Despite the importance of these dis-
ordered regions, it is currently difficult to accurately identify which res-
idues within a disordered region might be important.

Many of the proposed functions of disordered regions are mediated by
short linear motifs (14), which are specific peptides of 2 to 10 amino acids
1Department of Cell and Systems Biology, University of Toronto, Toronto,
Ontario M5S 3B2, Canada. 2Centre for the Analysis of Genome Evolution
and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada. 3De-
partment of Molecular Biosciences, Northwestern University, Evanston, IL
60208, USA. 4The Terrence Donnelly Centre for Cellular and Biomolecular
Research, University of Toronto, Toronto, Ontario M3S 3E1, Canada. 5Banting
and Best Department of Medical Research, University of Toronto, Toronto,
Ontario M5G 1L6, Canada. 6Department of Biochemistry, University of Toronto,
Toronto, Ontario M5S 1A8, Canada. 7Department of Computer Science, Uni-
versity of Toronto, Toronto, Ontario M5S 2E4, Canada. 8Department of Ecol-
ogy and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S
3B2, Canada.
*To whom correspondence should be addressed. E-mail: alan.moses@
utoronto.ca

w

that physically contact modifying enzymes or binding partners. We tested
whether we could systematically identify short linear motifs in disordered
regions by using the guiding principle of “comparative genomics”—that
critical functional sequences would be preferentially preserved over evo-
lution (15, 16). One approach to systematically identifying short linear
motifs is to combine in vitro peptide binding data, protein interaction
data, and bioinformatic searches (17–19). Another approach is to search
for matches to a motif pattern derived from sets of co-regulated proteins
(20, 21). Despite their wide applicability, many of these systematic ap-
proaches cannot provide evidence regarding the functional importance
of a particular short peptide in vivo. On the other hand, the comparative
genomics approach can provide evidence that a particular short sequence
is important to the organism. Comparative approaches that use only evo-
lutionary conservation are unbiased in that they do not require information
about protein function or whether the short linear motif has been previously
associated with a specific function. This is in contrast to other approaches
(17–21) that take advantage of high-throughput in vitro and in vivo exper-
imental information.

We applied a comparative genomic approach based on a phylogenetic
hiddenMarkov model (phylo-HMM) (22) to identify short protein sequences
in the proteome of the yeast Saccharomyces cerevisiae. The phylo-HMM
approach has been used previously to discover conserved elements in
DNA (22) by exploiting the pattern of nucleotide substitutions. We mod-
ified this phylo-HMM approach to include the pattern of insertion and
deletion events, as well as substitutions, within a protein sequence, and with
this method, we identified on average 1.44 short sequences per protein that
were highly conserved and found within intrinsically disordered regions—
these included 30% of previously identified short linear motifs in
disordered regions.

When our highly conserved sequences matched known consensuses of
short linear motifs, such as the FG motif for interaction with karyopherins,
the cyclin-dependent kinase (CDK) consensus phosphorylation site motif,
and the KEN box for ubiquitin-mediated protein degradation, we found
statistically significant enrichment of proteins known to be regulated by
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these short linear motifs. We experimentally verified a previously un-
known KEN box in the yeast protein Spt21. Furthermore, unsupervised
clustering of our conserved sequences on the basis of sequence similarity
identified hundreds of motif clusters, many of which were enriched for
functional annotations. Of the top clusters we examined, about 60% cor-
responded to known patterns of short linear motifs, whereas the others
represent putative newly identified patterns. We identified one such cluster
that was enriched for interacting proteins of the kinase Cbk1, which is a
member of the nuclear dumbbell forming 2 (Dbf2)–related (NDR) subfamily
of the large tumor suppressor (LATS) family of kinases, and showed that
the predicted motif mediated a physical interaction with that kinase. Final-
ly, we analyzed hub proteins and showed that they contain a higher density
of short conserved sequences when compared to the rest of the genome,
suggesting that their centrality in protein interaction networks may be fa-
cilitated by an overabundance of short linear motifs.
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RESULTS

A phylo-HMM approach can identify short conserved
sequences in proteins
Posttranslational regulation of protein activity is often mediated through
short linear motifs that are often present within disordered regions (12, 23).
Although these motifs share a common pattern or consensus that is im-
portant for their function, they are frequently short and may contain posi-
tions that have highly flexible amino acid preference. Thus, pattern matches
are expected to occur frequently in random protein sequences, with most
matches not corresponding to biologically relevant motifs. It has been sug-
gested that correspondence with biological function can be improved by
searching for motifs that are also conserved over evolution (24, 25). For
our analysis of the S. cerevisiae proteome, we chose related species that
have syntenic gene orthologs and are thought to have diverged 100 million
to 200 million years ago (26).

We developed a phylo-HMM–based computational framework to sys-
tematically detect conserved short linear motifs in unstructured regions in
multiple sequence alignments (Fig. 1A). We hypothesize that functionally
important short linear motifs will be preferentially conserved such that
substitutions and insertions or deletions will occur more frequently adja-
cent to the motif than within it (27). It therefore follows that the amino
acids in each multiple sequence alignment column fall into two classes:
the conserved class and the background class. The conserved class repre-
sents those amino acids with a slow rate of evolution corresponding to the
preferentially conserved motif (Fig. 1B and fig. S1, “Conserved,” rate =
ac), and the background class represents those with a faster rate of evolu-
tion, corresponding to divergent, functionally less important sequences
(Fig. 1B and fig. S1, “Background,” rate = aW). We compared the substi-
tution and insertion or deletion rate in each column with the overall rate in
a window of surrounding amino acids (Fig. 1B). We then used a statistical
approach based on a phylo-HMM to compute the probability (the poste-
rior probability) that each multiple sequence alignment column (Fig. 1B,
framed in green) is within the preferentially conserved class. The posterior
probability approaches 1 as segments increase in relative conservation or
as the number of consecutively conserved residues increases. When the
phylo-HMM approach was previously applied to analyze DNA conserva-
tion, only substitutions were considered. Because insertion and deletion
events are common in disordered regions, we have modified the phylo-
HMM approach to include these events as well (Fig. 1B, vertical black
bars separating gray highlights; see Materials and Methods).

To illustrate this method, we plotted the posterior probability as a
function of alignment position (a “probability trace”) for the disordered
w

N terminus of Sic1, which contains experimentally verified phosphoryl-
ation sites necessary for binding to the E3 ubiquitin ligase adaptor protein
Cdc4 (28, 29). The probability trace showed clear and specific peaks in
the N terminus of Sic1 (Fig. 1C), and these peaks corresponded to five of
the six known phosphorylation sites (28). In sequences lacking known
motifs, such as a segment of the transcription factor Swi5, the posterior
trace often was flat, despite variation in the local rate of protein evolution
(fig. S2).

Short conserved sequences predicted by the
phylo-HMM contain known motifs
Using the phylo-HMM, we performed a proteome-wide prediction of short
conserved sequences in S. cerevisiae and identified on average 1.44 short
conserved sequences passing our threshold per protein (see Materials and
Methods, Fig. 1A, and table S1). To assess whether these short conserved
sequences were biologically relevant, we analyzed a set of 352 literature-
curated short linear motifs found in disordered regions (table S2; see Ma-
terials and Methods for criteria). Although the phylo-HMM predicted
short conserved sequences for only ~5% of residues in disordered regions,
104 (30%) of the literature-curated short linear motifs were among the
predictions.

We searched our conserved sequences for matches to known patterns
of short linear motifs. In an in vitro kinase assay, of the 695 proteins with
at least one Cdc28 phosphorylation site matching the consensus sequence
([ST]Px[RK]), only 185 were phosphorylated by an analog-sensitive mu-
tant of Cdc28, a CDK (30). (Note that in motif sequences, letters in brack-
ets represent preferred residues for a particular position, and x represents
any amino acid.) Thus, simply having a consensus phosphorylation site is
not sufficient to predict Cdc28 substrates. Our phylo-HMM identified 40
proteins containing a short conserved sequence that matched the Cdc28
consensus pattern, and 32 of these were positive in the in vitro kinase as-
say (30), which is a significant enrichment (32 of 40 versus 185 of 695, P =
1.4 × 10−11, Fisher’s test; table S3). Of the 8 remaining proteins identified
by the phylo-HMM, 1 of those (Cdc15) includes consensus sites phos-
phorylated in vivo (31), and 2 are targets of kinases that can phosphorylate
the canonical Cdc28 consensus sequence—Rim15 phosphorylated by
Pho85 (32) and Fus2 phosphorylated by Fus3 (33). Thus, 80% of the pro-
teins identified by the phylo-HMM as containing conserved sequences
matching the canonical Cdc28 consensus pattern are likely to be substrates
of this kinase or other kinases that recognize the same or similar consensus
sequences.

The FG motif pattern (Phe-Gly), which is a canonical motif of com-
mon nuclear pore complex (NPC) proteins and may be important for
trafficking of proteins through the nuclear pore (34), is found in unstruc-
tured regions of these proteins (34). Thirteen components of the NPC have
been reported to contain FG repeats (33), seven of which can be further
classified into variants including the FxFG and GLFG motifs (34). Using
the phylo-HMM, we found 59 proteins in the yeast proteome with at least
one conserved FG dipeptide. These included 12 of the previously known
FG-containing NPC proteins. Because FG consensus matches are found
in 3438 yeast proteins, this is a significant enrichment (12 of 59 versus 13
of 3438, P = 7.21 × 10−16, Fisher’s test; table S3). Searches in the yeast
proteome for the more specific variants (FxFG and GLFG) yielded six of
seven nucleoporins that contain these variant FG motifs.

Of the 59 proteins identified as having a conserved FG dipeptide by
the phylo-HMM, one of these was Ndc1, which is localized to the nuclear
envelope and required for nuclear pore assembly (35, 36), but had not
previously been recognized as having an FG motif. The remaining 46 pro-
teins identified by the phylo-HMM analysis are not components of the
NPC but nevertheless contain a short conserved sequence that matches
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the minimal FG motif pattern. Because the motif occurred either within
known repeat sequences or in proteins that have roles in protein transport
and sorting, we believe that the conserved sequences containing an FG
dipeptide in the remaining 46 proteins are likely functional. For example,
we identified both Sla1 and Pan1, members of the actin cytoskeleton-
regulatory complex, as having the FGmotif, and the motif in Sla1 is within
the functionally important C-terminal repeat region (37). Other proteins
related to protein transport and sorting that we identified as having the
conserved FG dipeptide included Vps15, Ede1, Ent3, Ent5, Pga2, and
w

Glo3. Thus, rather than being limited to nuclear transport, the FG dipeptide
motif may function more broadly in protein transport.

We also identified proteins in the S. cerevisiae proteome with a con-
served KEN box [a degradation signal that is recognized by the anaphase-
promoting complex/cyclosome (APC/C)] (38). The KEN box acts as a
binding site for the APC/C and marks target proteins for degradation in
different phases of the cell cycle. The phylo-HMM analysis identified only
10 proteins with a conserved KEN sequence (table S3). Eight of those con-
tained an experimentally verified KEN degradation signal (39, 40), were
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Fig. 1. Schematic of the phylo-HMM approach. (A) Flowchart of the com- letions (illustrated as gray highlights) in blocks of the multiple sequence

putational framework to detect conserved short linear motifs in dis-
ordered regions of multiple sequence alignments. (B) The rate of
evolution for an alignment column (framed in green) is compared to a
rate of evolution over a window (w) adjacent to the column. The prob-
ability that the column is within the preferentially conserved class is com-
puted. The framework takes advantage of the amino acid substitutions
inferred in columns of the alignment and the pattern of insertions and de-
alignment (separated by vertical black lines). (C) A posterior probability
trace of the region 1 to 110 in the alignment of Sic1 (corresponding to
amino acid positions 1 to 100 in S. cerevisiae). Four strongly conserved
segments are detected by the phylo-HMM approach and these overlap
with experimentally reported phosphorylation sites in Sic1 (indicated by
stars), which are required for Cdc4 binding. The intensity of the red color
represents the posterior probability of the conserved state.
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characterized targets of the APC/C (41, 42), or were cyclins, including
Clb2, which contains a verified KEN sequence (43). The two remaining
motifs matching the KEN signal are found in Spt21 and Sgd1, neither of
which has been associated with the APC or reported to exhibit cell cycle–
regulated degradation (table S3). We noticed that the conserved KEN box
in Spt21 was followed by a conserved proline, which is also conserved fol-
lowing the KEN motif in Clb2 (Fig. 2A) and Mad3 (40), suggesting that
the proline may confer additional binding specificity beyond the KEN res-
idues. The presence of a proline after the KEN motif has been reported to
mediate more efficient APC/C-mediated degradation of mammalian pro-
teins with KEN boxes (44).

To confirm the in silico analyses, we experimentally tested whether the
identified KEN sequence in Spt21 served as a degradation signal (Fig. 2A).
Spt21 is a protein that promotes transcription of the genes encoding the
HTA2 and HTB2 histones, and transcription of the gene encoding Spt21 is
cell cycle–regulated (45). We found that the amount of Spt21 coincided
with the amount of Clb2, a protein that exhibits changes in abundance dur-
w

ing the cell cycle (Fig. 2B), which indicated that, as at the level of mRNA
(46), Spt21 protein abundance varied over the cell cycle.

Many proteins have multiple means of regulation, and degradation by
the APC/C may act as an additional layer of control, especially because
overexpression of Spt21 is deleterious (47). Given this cell cycle regulation
and the toxicity of overexpression, we reasoned that if the KEN sequence
is a biologically relevant degradation signal, then overexpression of a KEN
mutant form of Spt21 would be more toxic than a wild-type form. We mu-
tated the three consecutive KEN amino acids to alanines (Spt21ken) and
performed serial spot dilution assay to assess growth fitness. Growth was
more severely impaired by Spt21ken overexpression than by overexpres-
sion of the corresponding Spt21 control (Fig. 2C). To confirm that the
KEN box served as a degradation signal, we assayed changes in protein
abundance of Spt21 and Spt21ken through the cell cycle by overexpressing
the proteins with the GAL promoter followed by shutting off both tran-
scription and translation (see Materials and Methods). The abundance of
the KEN mutant form remained high, whereas the abundance of wild-type
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Fig. 2. A KEN box identified by the phylo-HMM approach in Spt21 mediates protein
degradation. (A) Alignments of the previously characterized Clb2 KEN box degradation
signal alongside the predicted KEN box in Spt21. Numbers indicate residue position
within the S. cerevisiae protein sequence. (B) Left panel is a Western blot showing that
the amount of SPT21-TAP varies within the cell cycle and, like Clb2, is absent in G1.
Endogenous hexokinase (HK) served as the loading control. Pearson correlation coefficient between the normalized amount of Spt21 and the nor-
malized amount of Clb2 was 0.89 and 0.87, respectively, in two independent experiments. Right panel shows FACS analysis as additional validation
of cell cycle progression. (C) Spotted serial dilutions of strains overexpressing protA-tagged wild-type (SPT21) or KEN box mutant (SPT21ken) show a
stronger fitness defect with overexpression of the KEN box mutant. (D) Western blot analysis shows that mutation of the KEN box stabilizes Spt21.
Wild-type (SPT21) and KEN box mutant (SPT21ken) expression was induced in galactose medium for 4 hours. Glucose was added to attenuate
protein expression, and protein synthesis was abolished through the addition of cycloheximide. HK was used as a loading control. Results shown
are a representative blot from three independent experiments (two with the protA tag and one with the GST tag). The time points after 60 min had
P values <0.05 (t test, n = 3) when comparing the normalized abundance of the wild-type to the KEN box mutant.
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Spt1 decreased over time (Fig. 2D). These results suggested that the con-
served KEN sequence in Spt21 is important for the cell cycle–dependent
degradation of this protein.

The evaluation of the KEN box, FG motif, and Cdc28 phosphorylation
consensus sites provided evidence that the phylo-HMM approach can pre-
dict biologically relevant, short conserved sequences. However, it is pos-
sible that many of the remaining predicted motifs in the yeast proteome
were identified by the phylo-HMM because they have not sufficiently di-
verged, or because alignment errors led to overestimation of the conserva-
tion of residues. To address the possibility of these computational artifacts,
we performed extensive simulations of protein evolution (see Materials and
Methods), which indicated that such artifacts occurred in alignments of
disordered regions at a rate of 1 in 9000 amino acids (fewer than 1 in every
50 proteins examined). Another possible source of error in our classifica-
tion of disordered regions may be the inclusion of larger protein domains
within our disordered regions. However, 63% of the predicted short con-
served sequences are within regions of at least 50 disordered amino acids,
which are unlikely to be protein domains. Along with the strong enrichment
of functional Cdc28 consensus sites, FG motifs, and KEN boxes, this low
rate of computational artifacts indicated that short conserved sequences
identified by the phylo-HMM likely represent functional elements within
unstructured regions.

Known and previously unknown sequence patterns
are uncovered by clustering the short conserved
segments by sequence similarity
We found that many proteins contained short conserved segments that did
not match any known sequence patterns, and, thus, these may represent
previously unknown short linear motifs. Conservation in distantly related
species would support the biological relevance of these previously un-
known motifs and would indicate that these are not computational artifacts
and are biologically important.

For example, we found a previously unknown motif in the C terminus
of the Dbp6 putative adenosine triphosphate (ATP)–dependent DEAD
box RNA helicase (48) that is conserved in plants, yeasts, and humans
(Fig. 3A). If this short conserved sequence is part of a biologically rele-
vant, previously unidentified motif pattern, we reasoned that similar short
conserved sequences should also be found in other proteins, possibly with
shared functions. Dbp6 is required for ribosome biogenesis, and we iden-
tified a similar highly conserved short segment in the yeast protein Utp25,
which is a DEAD box RNA helicase–like protein also related to ribosome
biogenesis (49). These sequences all match the pattern YxxxLxxL, and the
motif is conserved in distant orthologs for these proteins (Fig. 3B); there-
fore, we speculate that YxxxLxxL may represent an essential short linear
motif pattern found in the unstructured regions of proteins involved in
ribosome biogenesis.

To determine whether other previously unknown patterns were identi-
fiable in our data set, we used an unsupervised graph-clustering algorithm
[MCODE (50)] to group conserved sequences into motif patterns on the
basis of their sequence similarity without regard as to which protein con-
tained these motifs (see Materials and Methods). This type of analysis can
be visualized by a graph in which conserved sequences are represented as
nodes, edges correspond to sequence distance, and groups of highly inter-
connected nodes (detected by the graph-clustering algorithm) correspond
to motif patterns (Fig. 4A).

For one set of clustering parameters, this procedure yielded 282 clus-
ters covering 41% of the predicted sequences, with 38 large clusters con-
taining at least 20 short conserved sequences, representing 21% of the
predicted sequences, and 45 smaller clusters containing between 10 and
20 conserved sequences, each representing ~9% of the predicted sequences
w

(Fig. 4 and tables S4 and S5). As expected, this uncovered previously de-
scribed consensus sequences for short linear motifs, such as an SP/TP clus-
ter (proline-directed kinase consensus), a GLFG cluster, and a KEN cluster
(Fig. 4). These three motifs corresponded to the patterns described above,
and the proteins containing these motifs were enriched in the expected
function (see Materials and Methods). For example, the GLFG cluster
was enriched in proteins having a nuclear pore subcellular localization (9
nuclear pore–localized proteins of 16 proteins in cluster versus 46 nuclear
pore–localized proteins of 5884 proteins in the yeast proteome, P = 2.9 ×
10−15, Fisher’s test), whereas the proteins in the SP cluster were enriched for
cell cycle process (32 of 88 versus 520 of 5884, P = 2.4 × 10−12, Fisher’s
test). The SP cluster was the largest identified in our analysis (Fig. 4A and
table S4), likely containing phosphorylation sites for many different proline-
directed kinases (including the cell cycle kinases Cdc28 and Pho85), which
suggested that the most frequently observed conserved short sequences in
disordered regions in yeast are consensus phosphorylation sites.

Other clusters matching known consensus sequences included the NPF
cluster, a motif found in EH domain interacting proteins (51), which was
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Fig. 3. Predicted motifs are conserved in
distant species. (A) Alignment region of the
predicted YxxxLxxL motif in Dbp6 shows
conservation of the motif among eukaryotic
orthologs. Distant species comparison is shown
with a phylogenetic tree. Branch lengths are

not to scale. (B) Alignment of the predicted YxxxLxxL motif in Utp25 with its
human ortholog.
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enriched in endocytosis-related proteins (7
of 20 versus 59 of 5884, P = 1.09 × 10−9,
Fisher’s test); a KR cluster, which is a signa-
ture of nuclear localization signals (52, 53)
and was enriched in proteins identified in
the nuclear compartment (70 of 88 versus
2077 of 5884, P = 4.3 × 10−17, Fisher’s test);
and a cluster of proline-rich sequences that
resemble binding sites for peptide-binding
domains, such as SH3 (Src homology 3)
andWW (54). This cluster contained known
SH3-binding proteins, such as Las17 (55),
and predicted the presence of an uncharacter-
ized proline-rich binding site in the mitogen-
activated protein kinase kinase Mkk1.

We repeated the cluster analysis with
different parameter settings (see Materials
and Methods and tables S4 and S5) and
searched for clusters representing motif pat-
terns that to our knowledge are uncharacter-
ized but had strong enrichment in functional
annotations (Fig. 5, A to C). With this anal-
ysis, we identified an NPY cluster, which
may be related to the NPF motif and was
enriched in vesicle and nuclear membrane
proteins and enriched in proteins associated
with protein transport process (7 of 12 ver-
sus 419 of 5884, P = 5.64 × 10−6, Fisher’s
test). We also identified an FxDSF[RK]R mo-
tif, which was present in many amino acid
permeases (6 of 8 versus 36 of 5884, P = 2.5 ×
10−12, Fisher’s test), and those permeases
that contained thismotif alsohadaC-terminal
palmitoylation motif, FWC (56). Finally, we
identified a [YF][KQ]FP motif (also referred
toasFxFP),whichwasfoundinCbk1-interacting
proteins (57, 58) (4 of 6 versus 27 of 5884, P =
9.4 × 10−9, Fisher’s test).

Of these uncharacterized putative consen-
sus sequences, we focused on the [YF][KQ]FP
motif (Fig. 5C). This cluster was enriched for
proteins that interact with the kinase Cbk1
(57, 58) and contained two known Cbk1 sub-
strates, Ssd1 and Ace2 (59, 60) (Table 1). The
[YF][QK]FP pattern is not similar to the
known Cbk1 phosphorylation site consen-
sus (60) but is similar to the reported kinase
docking motif (FxFP) for the extracellular
signal–regulated kinases (ERKs) in mam-
mals (61). This docking motif facilitates
kinase-substrate recognition by specific
binding of the substrate to a docking site
on the kinase domain that is distinct from
the catalytic site (62). Therefore, we hy-
pothesized that this motif was important
for the physical interaction of the kinase
with its substrates. To test this, we fused
fragments containing the conserved se-
quences to maltose-binding protein (MBP)
and assayed binding to Cbk1 in a pull-down
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tation of the specificity of the motif. (B) A close-up representation of the FG motif cluster shows in-
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blue) and known SH3-binding peptides (in Las17 and Bnr1, highlighted in yellow). (D) A close-up
representation of the KEN motif cluster shows connection between the previously uncharacterized
KEN motif in Spt21 (highlighted in blue) and an experimentally verified KEN motif in Clb2 (highlighted
in yellow). See table S4 for a complete list of the proteins identified in each highlighted cluster.
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assay (see Materials and Methods). We detected reproducible binding with
five of six tested peptides (Fig. 6), indicating that the peptide fragments con-
taining the newly identified [YF][KQ]FP motif interacted with Cbk1.

Protein hubs show higher density of short linear motifs
One hypothesis for the existence of unstructured regions is that they serve
as regulatory hubs where multiple regulatory motifs can act in a concerted
way to finely regulate function and interaction (11, 12). This model is
consistent with the idea that unstructured regions can undergo multiple
different transient structural configurations to accommodate the multiple
regulatory sequences (5). Proteome-wide analyses of protein-protein inter-
actions (63, 64) have revealed a small number of “hub” proteins that in-
teract with many partners (65). Because protein-protein interactions are
often mediated by short linear motifs, we analyzed the short conserved
sequences in a high-confidence set of hub proteins (66).

Using our definition of unstructured regions, we found, consistent with
previous studies (11, 67), that hub proteins had significantly more large
segments (≥30 amino acids) of disordered amino acids (13% increase, P =
0.0009, Poisson distribution, Fig. 7A). Thus, relative to the entire proteome,
hub proteins should contain more predicted short linear motifs per pro-
tein because they have more disordered regions. Indeed, hub proteins con-
tained significantly more predicted short conserved sequences per protein
(46% increase, P = 2.8 × 10−12, Poisson distribution). However, the increase
in short conserved sequences was not due only to the fact that hub proteins
contained more large segments of disordered amino acids: We found that
hub proteins had a significantly higher density of short conserved se-
quences per amino acid (29% increase in disordered regions of ≥30, P =
1.83 × 10−12, Poisson distribution; Fig. 7B), indicating that these short con-
served sequences may mediate their high degree of connectivity. Thus, the
centrality of hub proteins to interaction networks may, in part, be due to
their high prevalence of short linear motifs.

DISCUSSION

Although unstructured regions are ubiquitous in eukaryotic proteomes, it
is difficult to identify the critical functional residues within them. For ex-
ample, despite detailed characterization of Utp25 (49), using the phylo-
HMM approach, we identified a short sequence in disordered regions of
this protein. This sequence was conserved in all eukaryotes but had not
been previously characterized. Systematic application of the phylo-HMM
approach to the yeast proteome identified on average 1.44 short conserved
sequences per protein, totaling about 5% of the unstructured amino acids.
Proteins containing known sequences showed strong functional enrichment,
suggesting that the conserved sequences are involved in specific biological
functions. Because the false-positive rate was 1 in 9000 unstructured
A

B

C

0 1

Posterior probability

Sec9

Bap3

Fir1Fig. 5. Previously unknown short linear motif
patterns are predicted by cluster analysis.
This figure shows representative examples
of highly interconnected motifs that repre-
sent uncharacterized sequence patterns.
(A) The NPYmotif cluster consists of proteins
enriched in vesicle and nuclear membrane

proteins related to protein transport. We show an example aligned seg-
ment from Sec9 at positions 231 to 234. (B) The FxDSF[KR]R motif
cluster consists of proteins enriched in amino acid permease function.
We show an example aligned segment from Bap3 at positions 56 to 61.
(C) The FxFP motif cluster consists of proteins enriched in Cbk1 kinase
targets. We show an example aligned segment from Fir1 at positions 416
to 419. See table S4 for a complete list of the proteins identified in each
cluster.
Table 1. Members of the FxFP cluster. Unsupervised clustering of
the conserved sequences revealed a cluster enriched for Cbk1 inter-
actors and contained two known Cbk1 kinase targets (underlined).
ORF, open reading frame.
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amino acids, we only expect about <1% or 70 of the thousands of identi-
fied short sequences to be false positives, resulting from computational
artifacts. However, in many individual cases, we are confident that the iden-
tified sequences are important, because the motif is conserved across diver-
gent species, representing a long evolutionary period. For example, the
previously uncharacterized KEN motif in Spt21 is conserved in its ortho-
logs within the Candida clade, and the Cbk1-interacting motifs in Ssd1p
are conserved even further within the Ascomycetes (fig. S3). Although
many short linear motifs are well conserved, other functional sequence seg-
ments may be species-specific, or they may not have been captured by our
analysis (for example, the phylo-HMM approach that we used does not
detect motifs embedded in large conserved protein fragments because these
large regions are excluded from the analysis). Consequently, the short linear
motifs predicted in this study only provide a lower bound of the number
and frequency of these motifs in unstructured regions. Because 30% of the
known characterized short linear motifs in disordered regions in our data set
were predicted by the phylo-HMM, and because our phylo-HMM identi-
fied short conserved sequences totaling about 5% of the unstructured
amino acids, we estimate that short linear motifs correspond to roughly
17% of the unstructured amino acids in yeast proteins.

Our approach for identifying short linear motifs is different from other
computational methods designed for this goal (68). Two other bioinfor-
matic approaches involve either the classification of matches to a known
consensus (69) or the prediction of a consensus given known co-regulation
(20, 70–73), both of which rely on previously obtained experimental data.
Other structure-based methods, such as ANCHOR (74), identify dis-
ordered regions that have the propensity to become ordered upon binding.
Our phylo-HMM approach requires only the evolutionary relationship be-
tween genes and that regulatory function is preserved in most of the spe-
cies considered. Therefore, our study is complementary to previous
methods and opens the framework of phylogenetic footprinting (75, 76)
w

(a method to identify functional elements in noncoding DNA by exploit-
ing evolutionary conservation) to protein sequences. Because this analysis
requires only sequence information from orthologous proteins, it can be
applied in many clades for which these data are now available (77, 78).
However, the success of the phylo-HMM approach is directly related to the
choice of species and their evolutionary distance. Computational artifacts
increase at short evolutionary distances (fig. S4D), whereas biologically
relevant motifs may no longer be conserved at the same position at very
long evolutionary distances and, therefore, will not be detected (fig. S5).
In general, the performance of the phylo-HMM approach can be assessed
by simulations of molecular evolution where conserved motifs have been
inserted and by analysis of previously characterized short linear motifs.
Another important issue concerning the performance of the phylo-
HMM approach is that the posterior probability output depends on both
the length of the conserved segment and its relative conservation compared
with the background evolutionary rate. Therefore, the predictions with the
highest posterior probability tend to be longer regions (more than five
amino acids), which we speculate may be high-specificity biomolecular
binding sites. Equally important short linear motifs may be very short (about
two amino acids) and will tend to have lower posterior probabilities.

Because our analysis is independent of functional data, it led to the
discovery of important elements from the sequence data without attaching
any specific function to the results. Although we could propose functions for
some previously unknown motif patterns through enrichment analysis for
biological processes, in other cases we also observed clusters that matched
known sequence patterns but were not present in proteins enriched in the
expected function. For example, we identified the well-characterized acidic
dileucine ([DE]xxxL[LI]) motif (table S5) found in transmembrane proteins
of endosomes and lysosomes in metazoans or in yeast vacuolar proteins
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Fig. 6. FxFP peptides interact with the Cbk1 kinase domain. Fragments
from proteins identified in the FxFP cluster were expressed as MBP fusions
and immobilized on amylose resin. The beads were assayed for binding to
GST-tagged Cbk1 (Cbk1D1-351) in a pull-down assay. Binding was detected
by Western blot for all six protein fragments tested, while MBP alone could
not pull down Cbk1 (lower panel). Shown is a representative blot from three
independent experiments. See fig. S6 for a shorter exposure of the blot
that shows the loading control.
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Fig. 7. Hub proteins are enriched in short conserved sequences. (A) The
frequency of long regions of disordered amino acids (AA) (≥30) for hub
proteins is higher than for the rest of the genome. (B) The number of
predicted conserved sequences per amino acid that are present in long
regions of disordered amino acids (≥30) is higher for hubs than the ge-
nome. Error bars represent the 95% confidence interval obtained by
nonparametric bootstrapping.
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(79) in one of our clusters. However, the proteins forming this cluster were
not significantly enriched for any particular compartment, even though it
includes the experimentally verified acidic dileucine motif from Vam3, a
vacuolar t-SNARE (80). We speculate that the conserved motifs in this
cluster likely serve other functions. Even when functional enrichment of a
cluster can be found, the function of the motif cannot always be ascer-
tained. Despite these potential difficulties in assigning functional relation-
ships, our unbiased methods (prediction of conserved sequences and the
clustering analysis) were successful in discovering an interaction motif for
the NDR/LATS kinase member Cbk1. We speculate that some sequence
patterns, such as the newly identified motif for Cbk1 interaction, are asso-
ciated with only one function, whereas others such as the acidic dileucine
motif and the FG dipeptide are involved in multiple processes.

Our analysis suggested that intrinsically disordered regions contain
large numbers of functional sequences that are involved in protein regulation
and interaction, and this may partly explain the prevalence of disordered
regions. Consistent with the hypothesis that the functional sequences may
contribute to protein interactions, we observed a higher density of pre-
dicted short linear motifs in hub proteins, which is consistent with previ-
ous reports that the disordered regions in hub proteins are particularly
important for their interactions (11, 66). The observation that the increase
in conserved sequence density (29%) (Fig. 7B) is greater than the increase
in disordered segments (13%) (Fig. 7A) suggests that the conserved se-
quences identified by the phylo-HMM approach are more indicative of
hub functions than the presence of disordered regions alone. We found
no differences in the types of conserved motifs in disordered regions of
hub proteins when compared to the rest of the genome, indicating that
there are no specific “hub motifs,” nor any differences in conserved se-
quence density between “date” and “party” hubs (66) (date hubs, 1.535;
party hubs, 1.520, per 100 amino acids in disordered regions ≥30 amino
acids). Instead, these highly connected proteins simply have more func-
tional sequences within their disordered regions than do proteins that
are not hubs. Given the importance of protein regulation and interaction
to cellular physiology (14) and an increasing appreciation of its impor-
tance in evolution (81, 82), disordered regions seem poised to play a crit-
ical role in these contexts.
rch 18, 2021
MATERIALS AND METHODS

Alignment of related species of yeasts
Protein sequences from 13 related species of yeasts [S. cerevisiae, Saccha-
romyces paradoxus, Saccharomyces mikatae, Saccharomyces bayanus,
Candida glabrata, Saccharomyces castellii (now renamed to Naumovia
castellii), Kluyveromyces polysporus (now renamed to Vanderwaltozyma
polyspora), Zygosaccharomyces rouxii,Kluyveromyces lactis, Ashbya gossypii,
Kluyveromyces waltii (now renamed Lachancea waltii), Kluyveromyces
thermotolerans (now renamed Lachancea thermotolerans) and Saccharo-
myces kluyveri (now renamed Lachancea kluyveri)] were obtained from
the Saccharomyces Genome Database (SGD) (83) and the Yeast Genome
Order Browser (26). These species were chosen because of the high qual-
ity of the sequence information and of the annotation associated with each
gene or protein. Orthologous genes were aligned with MAFFT (84) at au-
tomatic settings. Branch lengths for the species tree (26) were obtained by
10 replicates of 50 random concatenations of orthologous genes and ana-
lyzed with PAML v3.15 (85). Analysis showed that the expected substitu-
tion per site for these alignments was 3.189. We aligned 5121 proteins from
S. cerevisiae to at least one of the related species.

Conservation of motifs over more distantly related orthologs was per-
formed with sequences from the Fungal Orthogroup Repository (86) and
w

the Princeton Protein Orthology Database (87) or with BLASTP (88) on the
uniref90 database (89). Other species analyzed were Candida lusitaniae,
Debaryomyces hansenii, Candida guillermondii, Candida tropicalis, Can-
dida albicans, Candida parapsilosis, Lodderomyces elongisporus, Pichia
stipitis, Yarrowia lipolytica, Uncinocarpus reesii, Aspergillus niger, Penicil-
lium chrysogenum, Sclerotinia sclerotiorum, Schizosaccharomyces pombe,
Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Gallus gal-
lus, Mus musculus, Rattus rattus, Homo sapiens, Dictyostelium discoideum,
and Arabidopsis thaliana.

Creation of a two-state phylo-HMM
Our two-state phylo-HMM (fig. S1) has a rate parameter associated with
each state: one for the background (aw = background rate of evolution)
and one for the conserved segment (aC = conserved rate). The local rate of
evolution is the maximum likelihood estimate within a window (w = 21),
which was obtained by gradient ascent. The conserved rate of evolution
was set to be the smaller of (i) one-third of the local rate of evolution or (ii)
the maximum likelihood rate estimate at that column. These rates are then
used to obtain the likelihood of the data under specific models of protein
evolution, and the phylo-HMM then outputs a posterior probability of the
conserved state at a particular column.

We used Felsenstein’s algorithm (90, 91) to calculate the likelihood of
the data [P(data|tree)] with an empirical amino acid substitution matrix
obtained from the four closest related species of yeasts: S. cerevisiae,
S. paradoxus, S. mikatae, and S. bayanus. The tree used was the species
tree described above (fig. S7), where the branch lengths were scaled by the
rate of evolution for each HMM state. The likelihood of the substitution
process is therefore
Ls ¼ ∏
m

i¼1
Pðx•i jtree,aÞ

where m is the number of alignment columns and the tree indicates the
phylogenetic relationship between species (fig. S7). a is the rate of evo-
lution, which scales the branch lengths, and x• represents the amino acid
sequences in the alignment.

One of the assumptions of the traditional probabilistic approaches to
protein evolution (such as the phylo-HMM) is that every amino acid col-
umn in an alignment can be treated as independent (90). Because inser-
tions or deletions do not follow this assumption (they can span multiple
residues), most current phylogenetic models account only for residue sub-
stitutions (90, 92). Gaps are usually ignored in phylogenetic analyses. Be-
cause short linear motifs occur often in unstructured regions that tend to
create gapped regions in alignments, ignoring gaps would be a consider-
able problem in our analysis. Probabilistic models accounting for gaps
have been proposed (92), but their complexity and incompleteness have
motivated us to create another simpler model. In our protein evolution
model, blocks of gaps (illustrated as vertical black lines in Fig. 1B) are
treated as insertion or deletion events. We consider a gap process that op-
erates on one block at a time, contrasting with the substitution process that
operates on one column of an amino acid alignment at a time. The two
processes are considered independently and combined at the end. Having
assigned each insertion or deletion as a contiguous block, we can obtain
the likelihood of the gap process:
LG ¼ ∏
b

j¼1
Pð y•j jtree,a,kjÞ ¼ ∏

b

j¼1

kj −1:5

∑
∞

n¼1
n−1:5

Pð y•j jtree,aÞ

where b is the number of blocks and k the length of each block, which fol-
lows an empirically derived power law distribution (93). In this likelihood,
the substitution matrix consists of only two characters (gap or amino acids)
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The total likelihood of an alignment can then be written as

L ¼ LSLG

The HMM requires a likelihood for each alignment column. Therefore,
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Li ¼ Pðx•i jtree,aÞPðy•j jtree,a,kÞ1=k

To find regions in alignments that are conserved, we then computed
the posterior probability of the conserved state with the likelihood of sin-
gle columns and the forward and backward algorithm (90). Because the
insertion or deletion lengths do not depend on the evolutionary rate, the
likelihoods given by the empirically derived power law distribution are
canceled in the calculation of the posterior probability. This means that,
for our method, the appearance and disappearance of insertions and dele-
tions over the phylogenetic tree modeled as “blocks” are the sole contrib-
utor of insertion and deletion likelihoods in the final posterior probability.
Transition frequencies between states were obtained with the expectation-
maximization procedure described by Baum-Welch (90).

We used multiple heuristics on the posterior probability to find peaks
corresponding to short conserved residues. First, the analysis ignored the
first three residues of the alignment because the conserved methionine is
usually aligned by MAFFT. Second, peaks were found by initially finding
regions above a threshold of 0.2. These peaks were later pruned if the max-
imal posterior threshold within the region was lower than 0.6 or if they did
not fit the desired size (2 to 20 amino acids). Although peaks longer than
20 amino acids were rare because we calculated the local rate of evolution
with a window of size 21, we excluded these signals because we did not
consider them representative of typical short linear motifs.

We visualized the alignments with Jalview (94); red color intensity rep-
resented the posterior probability, and full color intensity indicated a pos-
terior probability of 1.

Defining unstructured regions
To find functional segments in unstructured regions of proteins, we used
several filters to select regions of interest (unstructured regions) and to
remove regions that may be conserved due to chance or as a property
of the alignment program. We used DISOPRED2 (95) to remove struc-
tured regions from proteins, as well as pFilt (96) for coiled coils. Large
repetitive regions were removed with the SEG algorithm (97). If long do-
mains were interspersed with short highly degenerate sequences, these
were not captured by any of the above filters, so we also removed regions
of high conservation that were longer than 20 amino acids. Overall, of the
total length of yeast proteins with orthologs, 24% of the amino acids
passed all our filters.

Analysis of literature-curated short linear motifs
To estimate the effectiveness of our approach in identifying previously
known short linear motifs, we identified 526 characterized short linear
motifs in budding yeast by performing literature searches for known post-
translational regulatory proteins and detailed reading of the primary literature
and determined how many of these were correctly identified by the phylo-
HMM. The modifications were mostly phosphorylation sites but also in-
cluded degradation signals, localization signals, interaction motifs, and
SUMOylation sites (table S2). Of these, 352 were found in regions that
ww
passed our filters for classification as disordered, and of these 352 (346 that
did not overlap with another motif ), we considered 123 (119 that did not
overlap with another motif ) conserved, such that they could be identified
(by consensus sequences within a window of six amino acids or by eye for
localization signals) in at least 90% of the orthologous proteins.

Our phylo-HMM approach predicted 104 (or 30% of the 346 motifs
that were classified as disordered) of the motifs present in disordered re-
gions. However, because the underlying assumption of the phylo-HMM is
that the motifs are fully conserved, we do not expect this method to find a
large portion of the regulatory elements that may diverge over long evo-
lutionary distances. Consistent with this, the phylo-HMM predicts 75 (or
63% of the 119 motifs that were classified as disordered and conserved) of
the conserved motifs (table S2 and fig. S5).

Simulations of protein evolution
To address the issue of computational artifacts resulting from misalign-
ment in distant species and to low sequence divergence, we performed
simulations of protein evolution. In our simulations, an ancestral protein
is randomly generated and evolved through point mutations, insertions,
and deletions according to the desired phylogenetic tree. Proteins contained
three regions (see fig. S4A for an example): the first region (on average,
75 amino acids) and third region (on average, 87.5 amino acids) evolved
at a “background” rate (the average rate of yeast proteins) or at 70 or
130% of this rate. The first region contained a single simulated short se-
quence (two to nine amino acids) that evolved at a slow rate that we varied
between 2.5 and 100% of the background rate. The second region (on av-
erage, 75 amino acids) evolved slowly to simulate a conserved protein do-
main. Because unstructured regions often include gaps from insertions and
deletions, we modeled the simulations such that the evolved proteins also
evolved insertions or deletions of various sizes (k) following an empirically
derived power law distribution with z = 1.5 (93) in
PðkjzÞ ¼ k�z

∑
∞

n¼1
n−z

We aligned the simulated protein sequences with MAFFT (84) (fig. S4A).
We performed 100 simulations per data point.

We assessed alignment and prediction accuracy with simulations per-
formed with different background rates of evolution. We plotted the accu-
racy of the alignment (fig. S4B, fraction of simulated motifs with correct
motif alignment), sensitivity of the phylo-HMM (fig. S4C, fraction of sim-
ulated motifs that were predicted by the phylo-HMM), and rate of com-
putational artifacts (fig. S4D, number of predictions that do not correspond
to a simulated motif per 100 unstructured amino acids).

To estimate the rate at which the phylo-HMM identified motifs that
were truly conserved, we compared the number of simulated motifs that
were correctly aligned with the number of simulated motifs identified by
the phylo-HMM. We found that 95% of the simulated artificial motifs
were correctly aligned even when the surrounding region had minimal
sequence similarity (at motif evolution rate 10% of the background rate,
fig. S4B). At the same motif evolution rate, 93% of the simulated motifs
were correctly identified and the fraction of simulated motifs that were pre-
dicted by the phylo-HMM was dependent on the relative rate of evolution
of the motif to the background (fig. S4C). The difference of the simulation
results (93% correct predictions) with results from literature-curated con-
served motifs (63% correct predictions) is likely due to an oversimplification
of the evolution of disordered regions in our simulations. We also addressed
the prediction of computational artifacts with the simulations. Because we
know the location of the true motifs in the simulations, any other motifs
identified by the phylo-HMM are false predictions. For yeast proteins
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evolving at the background rate, the phylo-HMM predicted about 1 false
conserved motif every 9000 rapidly evolving amino acids; however, this
was dependent on the background rate of evolution (fig. S4D).

To calculate the proportion of unstructured regions that contain short
functional sequences, we first estimated the fraction of our predicted con-
served sequences that are computational artifacts (1/9000 times 636,409
unstructured amino acids divided by 7361 predicted motifs = ~0.95%). To
estimate the fraction of unstructured amino acids that are biologically im-
portant, we divided the number of amino acids in predicted conserved se-
quences by the total number of unstructured amino acids in the yeast proteome
(33,626 divided by 636,904 = 5.3%) and multiplied by 99.05% (100% −
0.95%) to take into account the expected number of predicted computation-
al artifacts, which yields our estimate of 5.2%.

Motif clustering, alignment, and enrichment
We performed an all-by-all pairwise comparison and alignment of each se-
quence alignment to another with the Smith-Waterman algorithm (90, 98).
In the initial distance metric, we divided the alignment score by the square
root of the length of the alignment and corrected for the initial length of the
sequence. This was done so that poor but long alignments would not score
aswell as short but strong alignments.We also performed another clustering
with the same distancemetric, but first the sequenceswere extended by five
amino acids on each side, and the positions with an information content
lower than 1 (positions with high sequence diversity) were eliminated from
the beginning and end of the extended sequences. To easily identify sub-
clusters,we tried clustering by finding the top 10 “partners” of each sequence,
removing hits between paralogs and within the same gene. For this final
cluster, we first extended the sequences by five amino acids; however, we
did not divide by the square root of the length of the alignment. Alignments
that passed a threshold (as described in table S5) were then plotted as an
interaction network with Cytoscape (99), and we used the MCODE’s (50)
k-core clustering algorithm to form similarity clusters. MCODE often links
multiple clusters by a single node and therefore forms “subclusters.” We
analyzed either the whole clusters or these subclusters by creating sequence
logos and functional enrichment as described below (see table S5 for the top
20 predictions of each clustering analysis with annotation andmore details).

Enrichment in protein function or interaction was performed with data
from the MIPS functional catalog with FunSpec (100) and with data from
the Gene Ontology (GO) Slim Mapper at the SGD (83) for GO. Statistical
significance was assessed at a P value of <0.05.

Motif patterns are represented as sequence logos (101, 102), which were
obtained from a heuristic multiple alignment of the S. cerevisiae represent-
ative of each motif.

Strains, plasmids, and primers
We used an endogenously tagged SPT21 strain from the TAP-fusion library
(103) to assess Spt21 stability throughout the cell cycle. SPT21 overexpression
plasmids were obtained from the MORF (104) and GAL-ORF-GST (105)
libraries. Mutagenesis was performed with the QuikChange Site-Directed
Mutagenesis System developed by Stratagene. For the KEN box, all three co-
dons were mutated to the alanine coding GCTwith oligos SPT21kenbox1-FP
5′-GATATCTTTAACTAGTGAAAATGATGCTGCTGCTATTCCACCCCA-
AAGCATAACTAGTA and SPT21kenbox1-RP 5′-TACTAGTTATGCTT-
TGGGGTGGAATAGCAGCAGCATCATTTTCACTAGTTAAAGATATC.
The desiredmutationswere confirmed by sequence analysis. BY4741 or iso-
genic derivatives were used for all of our experiments.

Cell cycle induction of SPT21
Yeast cells expressing Spt21-TAP from its endogenous promoter were
grown to early log phase in YEPD (1% yeast extract, 2% bactopeptone,
ww
and 2% glucose) and then arrested in G1 with a factor. After 2 hours
(>95% cells arrested), the cells were washed twice with fresh medium
and samples were taken every 15 min. Both fluorescence-activated cell
sorting (FACS) analysis and the amount of Clb2 protein were used to fol-
low cell cycle progression. Hexokinase was used as the loading control for
the Western blot. Spt21 or Clb2 abundance was quantified, and signifi-
cance was assessed by Pearson correlation coefficient.

Pulse-chase assay
Cells carrying galactose-inducible overexpression plasmids were grown in
synthetic dextrose medium lacking uracil overnight. Spt21 and Spt21ken

expression was induced by culturing cells in galactose-containing medium
(2% concentration) for 4 hours. Glucose was subsequently added to a final
concentration of 2% to attenuate protein expression, and protein synthesis
was abolished through the addition of cycloheximide (100 mg/ml final).
Cells were collected at 20-min time intervals. To ensure reproducibility, we
performed pulse-chase experiments on both the glutathione S-transferase
(GST)– and the protA-tagged version of the Spt21 and corresponding KEN
box mutant. Protein abundance was quantified and analyzed for significant
changes in abundance by t test.

Protein extracts and Western blotting
Protein extracts were prepared by trichloroacetic acid and separated by SDS–
polyacrylamide gel electrophoresis (SDS-PAGE) on 8% polyacrylamide
gels. Western blotting was performed with anti-protA antibody (peroxidase
anti-peroxidase soluble complex, Sigma) for detection of SPT21-protA.
Clb2 and hexokinase detection was performed with a-Clb2 [Santa Cruz
Biotechnology, Clb2 (y-180)] and a-hexokinase (yeast) (Rockland Immuno-
chemicals Inc.), respectively. For data requiring quantification, we quanti-
fied the amount of protein with images of the Western blots obtained from
the VersaDoc MP System (Bio-Rad Laboratories Inc.). Mean band inten-
sities of the relevant proteins were normalized to the mean intensity of the
hexokinase band with ImageJ (106).

In vitro pull-down assays
AGST-taggedCbk1 fragment containing the kinase domain and theC-terminal
extension (~76 kD) was expressed in Escherichia coliRosetta(DE3)pLysS,
purifiedonNi-NTAresin (Qiagen)andglutathione-Sepharose (GEBiosciences),
and dialyzed into 20 mM tris, 150 mM NaCl, and 2 mM dithiothreitol (DTT)
(pH 8.0). Purified Cbk1 was flash-frozen in liquid nitrogen and stored at
−80°C. Fragments containing putative interaction motifs were expressed
as MBP fusions in BL21(DE3)RIL. Cell lysates containing the interaction
motif constructs were incubated with amylose resin (NewEngland Biolabs)
on a rotator at 4°C for 15 min, and the beads were washed with phosphate-
buffered saline [137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM
KH2PO4 (pH 7.3)] + 2 mM DTT. Washed amylose beads (about 50 mg of
MBP fusions) were incubatedwith 1 mMpurified Cbk1 (~3.8 mg) for 15min
at 4°C (total volume50ml) and thenwashedwithTBST [50mMtris, 150mM
NaCl, 0.1% Tween 20 (pH 7.5)] and resuspended in SDS-PAGE loading
buffer. A third of the reactions were loaded on SDS-PAGE gels, which were
directly stained by GelCode Blue (Pierce) or transferred to nitrocellulose for
Western blotting. Cbk1 was detected with a GST primary antibody (Santa
Cruz Biotechnology), followed by an IRDye800 anti-mouse (Rockland)
secondary antibodies. Blots were visualized with a Li-Cor Odyssey system.
SUPPLEMENTARY MATERIALS
www.sciencesignaling.org/cgi/content/full/5/215/rs1/DC1
Fig. S1. Schematic of the phylo-HMM approach.
Fig. S2. Regions with no conserved segments are not detected by the phylo-HMM
approach.
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in further yeast species.
Fig. S4. Simulation of protein evolution.
Fig. S5. Performance of the phylo-HMM approach on literature-curated short linear motifs.
Fig. S6. Binding of FxFP peptides to Cbk1.
Fig. S7. Phylogenetic tree of species used for this study.
Table S1. Predictions on the yeast proteome by the phylo-HMM approach. (Excel file)
Table S2. Literature-curated characterized short linear motifs. (Excel file)
Table S3. Enrichment analysis of motifs matching known consensus sequences. (Excel file)
Table S4. Clusters of similar short conserved sequences. (Excel file)
Table S5. Annotation of top 20 clusters from different distance metrics of predicted short
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proteins.
provide an effective method for discovering biologically important conserved motifs within the disordered regions of
motifs. Experimental analysis suggested that both sets of motifs were functionally important. Thus, this approach should 
short conserved motifs in proteins not known to have these motifs but also predicted previously unknown short conserved
applied to these disordered regions. Application of this method to yeast proteins not only revealed the presence of known 

. modified the phylogenetic hidden Markov model so that it could beet alexhibit high sequence divergence. Nguyen Ba 
residues in these regions has proved challenging because the regions are not visualized in crystal structures and tend to
clearly defined domains or motifs. Although these disordered regions are functionally important, identifying the important 

Many proteins, including those involved in signal transduction, have large disordered regions, in addition to their
Finding the Hidden Meaning in Disordered Regions

ARTICLE TOOLS http://stke.sciencemag.org/content/5/215/rs1

MATERIALS
SUPPLEMENTARY http://stke.sciencemag.org/content/suppl/2012/03/09/5.215.rs1.DC1

CONTENT
RELATED 

http://stke.sciencemag.org/content/sigtrans/10/471/eaan2406.full
http://stke.sciencemag.org/content/sigtrans/8/378/ra51.full
http://stke.sciencemag.org/content/sigtrans/7/350/ra105.full
http://stke.sciencemag.org/content/sigtrans/5/220/pe17.full
http://stke.sciencemag.org/content/sigtrans/5/222/ra35.full
http://stke.sciencemag.org/content/sigtrans/5/220/eg5.full

REFERENCES

http://stke.sciencemag.org/content/5/215/rs1#BIBL
This article cites 104 articles, 28 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science SignalingYork Avenue NW, Washington, DC 20005. The title 
(ISSN 1937-9145) is published by the American Association for the Advancement of Science, 1200 NewScience Signaling 

Copyright © 2012, American Association for the Advancement of Science

 on M
arch 18, 2021

http://stke.sciencem
ag.org/

D
ow

nloaded from
 

http://stke.sciencemag.org/content/5/215/rs1
http://stke.sciencemag.org/content/suppl/2012/03/09/5.215.rs1.DC1
http://stke.sciencemag.org/content/sigtrans/5/220/eg5.full
http://stke.sciencemag.org/content/sigtrans/5/222/ra35.full
http://stke.sciencemag.org/content/sigtrans/5/220/pe17.full
http://stke.sciencemag.org/content/sigtrans/7/350/ra105.full
http://stke.sciencemag.org/content/sigtrans/8/378/ra51.full
http://stke.sciencemag.org/content/sigtrans/10/471/eaan2406.full
http://stke.sciencemag.org/content/5/215/rs1#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://stke.sciencemag.org/

