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Abstract

Phosphorylation is one of the most studied and important regulatory mechanisms that modulate protein function in
eukaryotic cells. Recently, several studies have investigated the evolution of phosphorylation sites identified by high-
throughput methods. These studies have revealed varying degrees of evidence for constraint and plasticity, and therefore,
there is currently no consensus as to the evolutionary properties of this important regulatory mechanism. Here, we present
a study of high-confidence annotated sites from budding yeast and show that these sites are significantly constrained
compared with their flanking region in closely related species. We show that this property does not change in structured
or unstructured regions. We investigate the birth, death and compensation rates of the phosphorylation sites and test if
sites are more likely to be gained or lost in proteins with greater numbers of sites. Finally, we also show that this
evolutionary conservation can yield significant improvement for kinase target predictions when the kinase recognition
motif is known, and can be used to infer the recognition motif when a set of targets is known. Our analysis indicates that
phosphorylation sites are under selective constraint, consistent with their functional importance. We also find that a small
fraction of phosphorylation sites turnover during evolution, which may be an important process underlying the evolution

of regulatory networks.
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Introduction

Protein phosphorylation is a ubiquitous posttranslational
modification in cells as a means to regulate a variety of cel-
lular processes (Johnson and Hunter 2005). Despite its im-
portance, until recently, few studies had examined the
evolution of this regulatory mechanism. Phosphorylation
sites are critical functional elements within proteins, and
therefore, they are expected to be conserved over evolu-
tion. This conservation can be exploited to predict kinase
substrate interactions (Budovskaya et al. 2005). However,
two recent studies examined the evolution of phosphore-
gulation in the eukaryotic cell cycle and found evidence for
evolutionary changes in the regulatory networks (Jensen
et al. 2006; Moses, Liku, et al. 2007). Furthermore, a struc-
tural study of phosphorylation sites in mitotic proteins
found similar levels of conservation between phosphoryla-
tion sites and other similar residues (Jiménez et al. 2007),
suggesting no specific constraints on these sites.

With the availability of high-throughput data sets, it has
become possible to examine the evolutionary properties of
large sets of phosphorylation sites (Macek et al. 2008; Holt
etal. 2009; Landry et al. 2009; Yachie et al. 2009). Most stud-
ies have found evidence for evolutionary conservation of
phosphorylated S/T/Y residues compared with unphos-
phorylated residues (Gnad et al. 2007; Macek et al. 2008;
Malik et al. 2008; Landry et al. 2009). In addition, one
high-throughput study compared phosphorylation patterns

between distantly related yeast species and quantified
the rate of evolution of these patterns (Beltrao et al.
2009). Despite providing evidence for constraint, these
studies all identified a large number of phosphorylation
sites that were not preserved over evolution. These non-
conserved sites may contribute to the large difference of
patterns of phosphorylation between species (Beltrao
et al. 2009). However, it is also important to consider
whether many of the sites contained in high-throughput
data sets are not critical to protein regulation; for example,
some fraction of sites obtained by mass spectrometry may
not be functional sites (Lienhard 2008; Landry et al. 2009).
These nonfunctional sites are not expected to be preserved
over evolution and therefore may appear as evolutionary
changes.

Another important issue is that the alignments used in
some of the previous studies include sequences from dis-
tantly related species, which creates uncertainty in the
analysis because short degenerate motifs such as phosphor-
ylation sites may not be aligned accurately in distant
species comparisons (Balla et al. 2006).

Motivated to address these difficulties, we sought to ex-
amine the evolution of a large set of high-confidence phos-
phorylation sites, where we could obtain high-confidence
alignments of orthologous protein sequences. To do so, we
assembled 249 characterized phosphorylation sites in bud-
ding yeast from the literature, where the likely kinase
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responsible for phosphorylation is known. By examining
alignments of protein sequences from closely related spe-
cies we can explicitly test evolutionary hypotheses about
phosphorylation sites using the ratio of nonsynonymous
to synonymous substitutions (Ka/Ks) (Nei and Gojobori
1986). Our results show that the rate of amino acid sub-
stitution within the site is lower than the surrounding re-
gion and that this property is observed whether the sites
appear in structured or unstructured regions of the sub-
strate proteins. As expected, we find that the patterns
of substitution in phosphorylation sites are consistent with
the specific constraints imposed by the consensus recog-
nition site for the kinase. We also investigate the birth
and death and compensation rates of these annotated sites
and show that there are evolutionary constraints on the
appearance and disappearance of sites in targets of kinases,
but only weak constraints on compensation. We also con-
sider the possibility that gain and loss of phosphorylation
sites is due to redundancy, but we find no evidence that
sites are more likely to be lost or gained in proteins with
high number of sites.

Finally, we show that the evolutionary conservation of
phosphorylation sites relative to surrounding amino acid
sequence can be exploited to improve prediction of kinase
substrates or to find the kinase specificity.

Materials and Methods

Alignment of Closely Related Species of Yeasts

Genomic sequences from the four species in our study (Sac-
charomyces cerevisiae, Saccharomyces bayanus, Saccharo-
myces paradoxus, and Saccharomyces mikatae; Kellis
et al. 2003) were obtained from the SGD (SGD project,
2009) and translated open reading frames were aligned us-
ing t-coffee (Notredame et al. 2000) at default settings. DNA
sequences were aligned using the aligned protein sequences
by inserting the gaps from the protein sequence alignments
into the cDNA sequences. In all, 86% (5045/5884) of the
genes in S. cerevisiae were aligned successfully. The amino
acid sequences of these species are very similar: 73% of the
columns in these alignments have no amino acid differences.

Consensus Sequences of Phosphorylation Sites

The phosphoacceptor for each kinase was aligned, and the
flanking sequences were added afterward. We created a seq-
logo (Schneider and Stephens 1990; Crooks et al. 2004) for
each kinase and set the consensus sequence to start and
end where the information content equaled 1.

We defined critical residues as those residues that are
likely to be necessary for phosphorylation. These include
the phosphoacceptor and residues information content
comparable with the phosphoacceptor. We defined degen-
erate residues to be residues with lower but observable
information content and nonspecific residues as residues
with marginal information content.

We defined phosphorylation sites as the consensus se-
quence match of the respective kinase. This includes the
phosphoacceptor as well as critical, degenerate, and non-
specific residues as described above.

2028

Ka and Ks Calculation

To calculate the rate of synonymous (or nonsynonymous)
substitution, Ks (or Ka), we calculated the number of syn-
onymous (or nonsynonymous) substitutions and divided
by the number of synonymous (or nonsynonymous) sites.
This calculation was done either on individual columns of
alignments or on the “site” and “flank.” To calculate the
number of substitutions, we used the maximum parsimony
algorithm (Durbin et al. 1998) with no weighting on the
amino acid sequence, and to calculate the number of syn-
onymous or nonsynonymous sites, we used the method
presented by Nei and Gojobori (1986).

Error bars were obtained by nonparametric bootstrap-
ping of 1,000 samples with a 95% confidence interval
(Nei and Kumar 2000). P value from bootstrap analysis
is obtained by counting the number of times the Ka/Ks
of the flanking region is slower than the site divided by
the number of samples. Significance is assessed at P value
<<0.05.

A Likelihood Ratio Test of Two Rates of
Substitution Against One

We sought to test the hypothesis that the phosphorylation
site evolved at a slower rate than its flanking region. To do
so, we compared that hypothesis against the null hypoth-
esis that the whole region (site and flank) evolved at a con-
stant rate using a likelihood ratio test (LRT). Formally:

f(x|4)
f(xﬂanksMﬂanks)f(xsiteusite) ’

where x is the observed number of substitutions at a given
position, and / is the rate of evolution, and where Aok >
Asitee We assumed that substitutions occurred following
a Poisson process.

logLR = log

e *

fH2) =

x!

Assuming a single Ks rate over the whole region, the like-
lihood ratio only depends on the amino acid substitution
rate, Ka. The maximum likelihood estimate of Ka is simply
the number of nonsynonymous substitutions divided by
the number of nonsynonymous sites.

After some algebra, the log likelihood ratio is

A . A
(iﬂank) S °8 (/lsite) ’
where S is the number of nonsynonymous substitutions, and 4
is the maximum likelihood estimate of the rate of amino acid
substitution (Ka).

The LRT statistic is given by LRT=2logLR. Under the null
hypothesis, this statistic follows the > distribution with
degrees of freedom equal to 1. Significance is assessed at
P value <0.05.

logLR = Sqank log

Structure
To assess if a site was present in a structured or unstruc-
tured region, we used the method presented by Uversky
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et al. (2000) (Prilusky et al. 2005), first by removing the an-
notated phosphorylation site from the protein segment
and then using a window of 50 amino acids centered on
the region of the phosphorylation site.

Turnover Rate Calculation

Turnover rate is defined by both death and birth rates. We
defined death rate as the number of sites disappearing from
the inferred ancestral sequence divided by the number of
initial sites in the ancestral sequence, and we defined birth
rate as the number of sites appearing along the lineage
leading to S. cerevisiae after the divergence with S. mikatae
or S. paradoxus per 1,000 residues of the ancestral
sequence.

Significance of birth and death rate differences was as-
sessed using a two-tailed Fisher’s exact test by summing the
probability of more extreme possible observations. A P
value <0.05 was assessed as significant.

Site compensation was defined as a pair of noncon-
served phosphorylation site and birth within the same lin-
eage, within a local region of the protein. The distance
allowed for the site birth was halfway until the next pre-
dicted site within S. cerevisiae.

Site and Target Prediction

For various controls and kinase target prediction, we pre-
dicted phosphorylation sites using a profile hidden Markov
model (HMM) obtained from our initial alignments of sites.
Profile HMMs have been used in the past to predict protein
domains and model linear states that approximates a con-
sensus sequence (e.g, Pfam; Finn et al. 2008). Although this
may not be needed for kinases such as Mec1p, which follow
a strict consensus sequence, other kinases such as cyclin-
dependent kinase (CDK) have “weak” and “strong” consen-
sus matches that offer more leeway in their recognition sig-
nal. Because HMMbuild (Eddy 1998) was found to be more
reliable for longer sequences than most phosphorylation
recognition signal, we built a similar model using a single
Dirichlet prior that fitted most with one of the Dirichlet
mixture for pseudocount (Sjolander et al. 1996). We then
used the posterior algorithm and a threshold that validated
most of our annotated sites to predict putative sites.

For CDK, kinase target prediction was assessed using the
proteins identified as substrates by Ubersax et al. (2003) as
positives and the remaining proteins tested by Ubsersax
et al. as negatives (nontargets). We calculated the positive
predictive power by counting the number of positive pro-
teins above an LRT threshold divided by the total number
of proteins above the same threshold among the two sets.
For Mecl, kinase target prediction was assessed using the
proteins with at least one characterized Mec1 phosphory-
lation site as positives and all proteins with characterized
phosphorylation sites for other kinases, but not Mec1, as
negatives. Although some of these proteins may indeed
be targets of Mec1, we hoped that by using this set as neg-
atives, we would reduce the effect of the bias that is in-
duced by researchers when they choose which proteins
to study.

Results

A Set of Functional Phosphorylation Sites in
S. cerevisiae for Which the Kinase is Known
In order to study the evolutionary properties of phosphor-
ylation sites, we searched the literature for experimentally
verified phosphorylation sites where the kinase had been
identified in low-throughput experiments. Although there
is no single experiment that conclusively shows that a spe-
cific site is phosphorylated by a specific kinase in vivo, we
chose to include phosphorylation sites where 1) site-
specific mutagenesis on the phosphoacceptor site (usually
S/T/Y to A to create nonphosphorylatable mutants) has
revealed a functional role for the site or group of sites
or 2) low-throughput identification of phosphosites by
mass spectrometry had identified sites. The vast majority
of the sites included have been confirmed by site-specific
mutagenesis. In addition, we required that each site has
evidence for the specific kinase responsible, either by in vi-
tro experiments showing phosphorylation of the site by
that kinase or by in vivo experiments showing that the
phosphorylation or mutant phenotype depended on a par-
ticular kinase. Because kinases usually recognize a short de-
generate consensus sequence around the phosphorylated
residue (Miller and Blom 2009), knowing the identity of the
kinase responsible allows us to accurately define the extent
of expected conservation around the phosphorylation site.
This contrasts with previous studies on phosphoevolution
where phosphorylation sites have been obtained with high-
throughput mass spectrometry (Macek et al. 2008; Holt
et al. 2009; Landry et al. 2009; Yachie et al. 2009) and where
the kinase was unknown. In those studies, the evolutionary
properties of only the phosphoacceptor sites can be
studied.

We focused on seven kinases for which we could define
a consensus sequence: CDK (or Cdc28p), Meclp, CKII
(Cka1p/Cka2p/Ckb1p/Ckb2p), Prklp, Ipllp, protein
kinase A (PKA) (or Tpklp/Tpk2p/Tpk3p), and Pho85p
(see table 1). We manually aligned all the sites for each
kinase and determined the extent of the consensus sequen-
ces based on the information content. These consensus se-
quences are represented as seqlogos (Schneider and
Stephens 1990; Crooks et al. 2004) in figure 1. We refer
to these sites as “annotated” phosphorylation sites, and
we believe that they represent a high-confidence set of bona
fide phosphorylation sites in budding yeast. These sites will
be made available through a publicly available website
(AN.N.B., A. Hussin, A. Pogoutse, AM.M,, in preparation).
A complete table of these sites and references can be found
as supplementary table S1 (Supplementary Material online).

There is Evidence of Conservation of
Phosphorylation Sites

We first sought to test for evidence of evolutionary con-
straint on the annotated phosphorylation sites. To perform
our analysis, we aligned orthologous proteins from four
closely related species of yeasts (S. cerevisiae, S. paradoxus,
S. mikatae, and S. bayanus, see Materials and Methods). We
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Table 1. Summary of the Sites Included in Our Analysis. Ka/Ks was Calculated as in the Materials and Methods. The LRT is the Likelihood
Ratio Statistic and the P Value is Given Following a * with a Degree of Freedom Equal to 1 (see Materials and Methods). P Value From
Bootstrap Analysis is Given by the Number of Times the Ka/Ks of the Flank was Observed to be Higher than the Site in 1,000 Nonparametric
Bootstraps (see Materials and Methods). Double Asterisks Show Strong Significance (P < 0.01), and Single Asterisk Shows Significance (P <

0.05).

Number of
Kinase Phosphorylation Sites® Ka/Ks in Site Ka/Ks in Flank LRT P Value of LRT P Value of Bootstrap
CDK 114 0.071 0.109 19.62 9.4 X 10 %6+ 0.005 **
Mec1p 47 0.062 0.173 24.26 8.4 X 10 7 <0.001**
Ipl1p 18 0.14 0.157 0.008 0.93 0.37
cKi 17 (27) 0.05 0.01 3.06 0.08 0.003**
Prkip 20 (23) 0.034 0.06 494 0.03* 0.128
PKA 14 (18) 0.126 0.057 0 1 0.986
Pho85p 19 (22) 0.025 0.062 5.64 0.018* 0.031*
Total 249 (269) 0.069 0.118 64.36 1 X 1015 <0.001**

2 In parenthesis is the total number of sites found in the literature. Our analysis excluded overlapping sites.

then used maximum parsimony (Durbin et al. 1998) (see
Materials and Methods) to calculate the rate of amino acid
and synonymous substitution (Ka and Ks) (Nei and
Gojobori 1986) in the phosphorylation sites (termed
“site”). Because phosphorylation sites occur preferentially
in unstructured regions of proteins (Gnad et al. 2007;
Landry et al. 2009), and phosphoproteins evolve more
slowly than other proteins (Gnad et al. 2007), comparing
them with a random sample of sites can be misleading. We
therefore compared the rates of evolution in the character-
ized phosphorylation sites with five amino acids on each
side (termed “flank”). We use the flanking region to control
for structured and unstructured segments of proteins, as
well as different rates of protein evolution. To explicitly test
for a difference in substitution rate between the sites and
flanks, we performed an LRT to compare the hypothesis
that the site evolves at a different rate than the flanking
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4 4
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region with the hypothesis that a single rate of evolution
explains the patterns in both classes (see Materials and
Methods). In each case we also performed a nonparametric
bootstrap to confirm the significance of our results (see
table 1).

Using this method, we found that there is a significant
reduction in amino acid substitution rate within the phos-
phorylation sites as compared with the flanking regions
(Ka/Ks 0.069 vs. 0.118 for sites and flanks, respectively,
LRT = 64.36, P value < 10™'% fig. 2a and table 1). This
indicates that phosphorylation sites evolve under specific
evolutionary constraint relative to the regions in which
they occur in proteins.

Because we defined a phosphorylation site to include
more information than the phosphoacceptor, we investi-
gated the Ka/Ks ratio of amino acids defined as critical
(substitution would very likely prevent phosphorylation),
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Fic. 1. Sequence logos of aligned annotated sites of seven kinases. (a—g) Annotated sites from each kinases were aligned along with their
flanking regions, and boundaries were chosen where the information content was >1.
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Fic. 2. Difference in Ka/Ks ratio between sites and their flanking regions. (a) Ka/Ks ratio of annotated sites and their flanking regions. (b) Ka/Ks
ratio of amino acids denoted as critical, degenerate, or nonspecific and the flanking region of each site. Lines between each bar show significant
differences under the LRT. (c) Ka/Ks ratio of annotated sites from each kinase. In all graphs, the error bars are obtained from a 95% confidence
interval from a nonparametric bootstrap of 1,000 replicates. Error bars are only shown for cases with at least 40 phosphorylation sites.

Significance from the LRT is shown as an asterisk (P < 0.05).

degenerate (substitution may lower phosphorylation
affinity), or nonspecific (substitution is unlikely to impact
phosphorylation). We categorized each position in the
recognition motifs based on the information content
(see Materials and Methods). We calculated the Ka and
Ks at each position of the phosphorylation site consensus
sequence and binned the sites according to the categori-
zation. As expected, the Ka/Ks ratio of the amino acids
defined as critical (0.057) is lower than degenerate amino
acids (0.068), which are lower than nonspecific amino acids
(0.104, fig. 2b).

Performing the analysis on each kinase independently
reveals a lower Ka/Ks ratio in the sites versus the flanking
residues for all the studied kinases but PKA (fig. 2¢). The
LRT indicates that most of the sites of kinases have a
significantly lower rate of substitution than the flanking
residues.

It is possible that this lower rate of substitution is due to
the difference in frequency of particular amino acids within
the consensus sequences, as compared with the flanking
regions. To confirm that this could not explain our results,
we used as a negative control 514 proteins which were
shown not to be targets of CDK by Ubersax et al. (2003).
We randomly sampled an equivalent number of sequences
matching the CDK consensus from these “nontargets” and
computed the Ka/Ks ratio as well as the LRT described above
(see Materials and Methods). On average, these nontargets
showed LRT statistics of 1.8 (SD = 2.23), much less than the
LRT = 19.62 observed for the annotated sites. This indicates
that the differences in amino acid composition between the
sites and flanks cannot account for the large LRT statistics

that we have observed in the annotated sites. We note that
the nontargets include some fraction of false negatives, and
therefore, this can be regarded as a conservative estimate for
the contribution of the difference in residue frequencies.
Therefore, at least for CDK sites, the lower rate of substitu-
tion within the site compared with the flanking region was
not due to amino acid content as our negative and anno-
tated sets show dramatically different results although
having similar amino acid content.

We note that most of the sites in our data set appear in
unstructured regions of proteins (75% unstructured and
25% structured), and a previous study (Landry et al.
2009) has stressed the importance of studying the context
of the phosphorylation site in evolutionary analyses. How-
ever, we found that the constraint observed above is similar
in both structured and unstructured regions (fig. 3).

Phosphorylation Site Turnover

Previous studies have shown that phosphoregulation may
change over evolution (Moses, Liku, et al. 2007), and con-
sistent with this, alignments of phosphorylation sites over
long evolutionary distances show evidence of change (Holt
et al. 2009; Tan et al. 2009). One possible explanation is that
the sites may not be required to stay at a particular location
in a protein and therefore may shift position over evolution
(Moses, Liku, et al. 2007; Holt et al. 2009; Tan et al. 2009),
especially in unstructured regions (Brown et al. 2002). An-
other explanation is that proteins with multiple sites may
lose or gain a few sites without changing the regulation of
the protein (Moses, Liku, et al. 2007; Serber and Ferrell
2007). In both these cases, functional phosphorylation site
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Fic. 3. Difference in Ka/Ks ratio between sites and their flanking
regions categorized by structured and unstructured regions. Ka/Ks
ratio and results of the LRT of annotated sites and their flanking
regions for annotated sites separated by structured or unstructured
regions. Error bars were obtained from a 95% confidence interval
from a nonparametric bootstrap of 1,000 replicates. Significance
from the LRT is shown as an asterisk (P < 0.05).

turnover does not impact protein function. However,
a third possibility is that phosphorylation sites identified
in high-throughput experiments may be nonfunctional,
and the evolutionary changes we observe are simply due
to the loss of nonfunctional residues.

We decided to test whether we could observe the mi-
croevolutionary steps that underlie the changes in func-
tional phosphoregulatory networks. We therefore sought
to quantify the rate of turnover of phosphorylation sites
within our set of annotated sites. We considered sites that
contained substitutions of the critical residues (see Materi-
als and Methods) to be nonconserved. Of the 249 func-
tional sites in our set, we found 22 (8.8 = 1.8%) that
were not conserved in the alignments of the closely related
species studied here. We confirmed that these noncon-
served sites were not due alignment errors or missing data
(supplementary data and supplementary table S2, Supple-
mentary Material online).

To test for evidence of selection influencing the rates of
phosphorylation site turnover, we took advantage of the
CDK unbiased “nontarget” set (Ubersax et al. 2003). If se-
lection acts to preserve functional phosphorylation sites,
we predict that characterized sites should be lost at a slower
rate than similar sequences in the nontargets. On the other
hand, if phosphorylation sites were recently added by pos-
itive selection, we would expect to see a faster rate of char-
acterized phosphorylation site gain relative to the
appearance of matches to the consensus sequence in pro-
teins we know not to be targets. Another hypothesis for the
observation of turnover is that constraint at the individual
site is superseded by the constraint that total number of
sites should be conserved. Therefore, if selection is acting to
preserve the total number of sites in a protein, a “death”
can be compensated by a “birth” nearby on the same lin-
eage. To test these hypotheses, we compared the rate of
birth (fig. 4a for an example), death (fig. 4b for an example),

2032

and compensation (fig. 4¢) from our annotated CDK sites
with the consensus sequences in the set of unbiased neg-
ative proteins (nontargets) from Ubersax et al. We chose
the set of unbiased nontargets because the birth rate ob-
tained from the total negative set would be biased, as these
proteins were chosen to be tested on the basis of the
presence of a consensus sequence.

We counted birth as sites appearing in the lineage lead-
ing to S. cerevisiae after the divergence with S. mikatae or
S. paradoxus and deaths where sites disappeared in either
S. mikatae or S. paradoxus, and compensation as a pair of
birth and death within the same lineage. Doing so, we
found that in our annotated sites, both the birth rate
and the death rate were lower than in the set of unbiased
nontargets (0.019 vs. 0.075 for deaths, P = 0.04, and 0.14 vs.
0.55 for births, P << 0.01, Fisher’s exact test, fig. 4d). Al-
though we observed an increased rate of compensation
within our annotated set, it was not found to be significant
(0.5 compensation/turnover vs. 0.2 compensation/turn-
over P value = 0.14, Fisher’s exact test, fig. 4d). To control
for the possibility that this birth and death rate difference is
due to the difference in the amount of structured or un-
structured regions in both sets, we also calculated the birth
and death rates on only unstructured regions or structured
regions. Doing so, we found similar results: Both the birth
and death rates are lower in the annotated set whether or
not we look at structured or unstructured regions (data not
shown).

Taken together, this analysis indicates that functional
sites are under selective constraint to be preserved and that
the bona fide targets of the kinase are also less likely to
spawn new sites, suggesting selection against spurious
matches to the consensus. We propose that in real targets,
the appearance of new sites is more likely to disrupt protein
function (e.g., inappropriate phosphorylation of a protein
domain) than in the nontargets where consensus matches
are likely not to be phosphorylated (e.g, because the kinase
is never localized close to the substrate).

If selection acts on the number of phosphorylation sites,
rather than the specific residues, loss or gain of sites may be
permissive in proteins with a high number of phosphory-
lation sites. We found that the average 8.8% site turnover
was seen across all proteins regardless of their site count
and found no significance with a simulation of random
turnover event (fig. 5). We tested our statistical power
to observe significance in this test and found that, in a sim-
ulation where we assumed a site was n times more likely to
be lost in a protein with n sites than in a protein with a sin-
gle site, we did have a large enough sample size to detect
this effect.

Conservation of Phosphorylation Sites Can Improve
Kinase Target and Specificity Predictions

Two important challenges in computational biology are
predicting kinase substrates based on kinase specificity
(Kobe et al. 2005; Turk 2008; Miller and Blom 2009)
and predicting kinase specificity given a set of known
substrates (Schwartz and Gygi 2005). We observed that
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experimentally confirmed phosphorylation sites had
a lower rate of substitutions than their flanking region.
We sought to see if this information could be used to im-
prove kinase target prediction or if it could uncover
specific recognition motifs. To perform this analysis, we
attempted to predict targets and specificity of CDK
and Meclp, the kinases for which we had the most
available data.
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Non-targets
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0.08 1
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0.02 -

Ratio of sites non-conserved

1and 2 3and 4 5or more
Number of phosphosites in protein

Fic. 5. Turnover in proteins with different number of sites.
Percentage of nonconserved site within proteins of different
number of sites. Significance of the different distributions was
assessed with a % test at a significance level of 5% with degrees of
freedom equal to 2.

We first attempted to predict kinase targets. For CDK,
our set of positives and negatives were obtained from the
set of CDK targets of Ubersax et al. using a CDK-as1 allele
(Ubersax et al. 2003). To incorporate the slower rate of evo-
lution of phosphorylation sites into sequence-based predic-
tion, we applied the LRT described above to the matches to
the CDK consensus sequence in each particular protein.
Running our LRT on individual proteins, we observe that
the likelihood ratio alone is a strong predictor of targets,
yielding significant positive predictive value (P < 0.05,
Fisher’s test compared with the consensus sequence alone).
Because proteins with more matches to the CDK consensus
are more likely to represent bona fide targets of this kinase
(Moses, Hériché, and Durbin 2007), we also analyzed tar-
gets separately depending on the number of matches to
the full consensus.

We find that the improvement in positive predictive
value is more pronounced when the number of full con-
sensus matches within the protein is lowest (fig. 6a). This
is likely due to the strong predictive power achieved in the
case of large numbers of consensus sites in the absence of
evolutionary information. The evidence for constraint on
phosphorylation sites improves prediction in the cases
where consensus sites alone provide poor predictive power.

We then performed a similar analysis on Mec1p targets.
Our set of positives were the proteins with annotated
Mec1p sites, and our set of negatives were protein targets
of other kinases within our initial data set. Similar to CDK,
we observe that the LRT on individual protein is a strong
predictor of targets with significant positive predictive
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Fic. 6. Improved target prediction using the LRT. (a) Ratio of the positive predictive value of the LRT against the consensus sequence alone on
the Ubersax et al. set of negative and positive targets of CDK. The number of matches to the full CDK consensus sequence was used to separate
the set in multiple categories. (b) Ratio of positive predictive value of the LRT against the consensus sequence alone on our set of proteins with
annotated phosphorylation site. Positive targets were genes that had annotated Mec1p sites, and nontargets were the rest of the proteins with

annotated sites having a Mec1p consensus sequence.

value (P < 0.05, Fisher’s test compared with the consensus
sequence alone) (fig. 6b).

We next tested whether the evolutionary information
could be used to search for the kinase recognition motif.
For a given set of kinase targets, we identified all k-mers
that included a serine or a threonine within unstructured
regions and tested their conservation compared with their
flanking region using the LRT. For k-mers that are found at
least three times in the unstructured regions of the sub-
strates, we found that the LRTs are sufficient to uncover
both the CDK recognition motif ([ST]-P, indicated with
circles in fig. 7a) and the Meclp recognition motif
([ST]-Q, indicated with circles in fig. 7b). As a negative con-
trol, we performed a similar analysis on the non-CDK
targets described above and did not recover the CDK
consensus (data not shown).

This indicates that the evolutionary conservation can be
complementary to the information about the number of
consensus sites when predicting kinase substrates and that
it can help in predicting kinase recognition motifs.

Discussion

Our study differs from previous studies in four main meth-
odologies. First, the phosphorylation sites in our study were
known to be functional. Second, we only included closely
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related species of yeasts. Third, we included important res-
idues other than the phosphosite in the evolutionary rate
calculations. Finally, the phosphosites were categorized by
their respective kinases in order to test for differences be-
tween kinases. Our methodology was chosen to ensure that
we obtained reliable alignments and to ensure that our
analysis did not include falsely labeled phosphorylation
sites. Thus, we have higher confidence in the alignments
and the studied sites, but our conclusions are based on less
data and substitutions, which are necessary to infer evolu-
tionary properties.

Nevertheless, our analysis of the annotated phosphory-
lation sites in S. cerevisiae yielded several results which have
been suggested in other studies (Gnad et al. 2007; Macek
et al. 2008; Malik et al. 2008; Beltrao et al. 2009; Holt et al.
2009; Landry et al. 2009; Yachie et al. 2009): On average,
phosphorylation sites show evidence of functional con-
straint, but individual sites appear to turnover during evo-
lution. We note that the number of sites in our study is
much smaller than many of the previous studies (and rep-
resents a small fraction of the total number of phosphor-
ylation sites in the yeast proteome). Furthermore, as we
only studied seven kinases, we note that it might not be
possible to generalize our study to the whole phosphopro-
teome. Indeed, results vary between kinases: For example,
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Fic. 7. Kinase specificity prediction using the LRT. (a) K-mers with
serines or threonines ranked by their likelihood ratio statistics in the
unstructured regions of CDK targets. Black circles are k-mers that fit
the known CDK consensus sequence. (b) K-mers with serines or
threonines ranked by their likelihood ratio statistics on Mec1p targets.
Black circles are k-mers that fit the known Mec1p consensus sequence.

PKA sites did not show evidence for constraint relative to
their flanking sequences. At least in the case of CDK, how-
ever, our results seem to be generalizable as we observe
similar results (supplementary data, Supplementary Mate-
rial online) on putative phosphorylation sites in a large set
of CDK targets (Ubersax et al. 2003).

In addition, conservation of sites within very closely re-
lated species of yeasts has been observed for sites within
targets of CDK (Holt et al. 2009), and the lower death rate
in annotated CDK sites that we observed is consistent with
the observation that enrichment of sites is also maintained
over evolution (Holt et al. 2009).

In another study, it had been shown that phosphory-
lated residues from high-throughput data in yeast do
not appear to be constrained when compared with
nonphosphorylated serines/threonines/tyrosines (Landry
et al. 2009). Further analysis from that study showed that
constraint was significantly observed when comparing
phosphorylated residues with known function instead in
a human data set. Consistent with this, we found that con-
straint could not be observed by comparing the phos-
phoacceptor with its flanking residues in their yeast
high-throughput data set (supplementary data, Supple-
mentary Material online). Because our sites were all shown
to be functional, our analysis confirms the idea that func-
tional sites are more likely to be preserved (Budovskaya
et al. 2005; Landry et al. 2009).

The above indicates that evolutionary information can
therefore be used to infer functional phosphorylation sites
in proteins known to be phosphorylated by a certain ki-
nase. Indeed, some studies in the past have taken advan-
tage of this information (Wang et al. 2005; Koch et al. 2009)
for their protein of interest. Evolutionary conservation has
also been used systematically to predict novel substrates of
PKA (Budovskaya et al. 2005). Although we did not devise
a method to predict targets of kinases, we confirmed that,
as a proof of concept, simple evolutionary constraint im-
proves predictive power in proteins with small numbers of
full consensus sites.

Furthermore, kinase specificity has been predicted in the
past using enrichment of linear motifs (Schwartz and Gygi
2005) as proteins phosphorylated by a kinase often share
a common recognition motif around the phosphoacceptor.
We also have shown that because these motifs tend to be
conserved, evolutionary information can help in predicting
the kinase recognition motif in the case where the sub-
strates are known.

Although conservation seems to be a general feature of
functional phosphorylation sites, by looking at well-
characterized sites in closely related species, we quantified
the process of evolutionary change in phosphorylation sites:
We found that ~9% of phosphorylation sites were not con-
served in the closely related species considered here. Turn-
over of phosphorylation sites could be consistent either with
redundancy of sites in unstructured multiply phosphorylated
regions or with changes in phosphoregulatory networks
(Moses, Liku, et al. 2007; Beltrao et al. 2009; Tan et al. 2009).

Consistent with the hypothesis that the total number of
sites within a protein is conserved, and the individual sites
are free to turnover, we observed examples of compensa-
tion within our annotated set, although we could not find
statistical evidence for selection on this process. Similarly,
we could not find any evolutionary evidence for redun-
dancy of phosphorylation sites in multiply phosphorylated
proteins.

On the other hand, it has been proposed that changes in
regulatory networks are enabled by the presence of phos-
phorylation sites in unstructured regions that evolve rap-
idly (Collins 2009; Holt et al. 2009). However, our data
showed similar constraints on phosphorylation sites in
structured and unstructured regions, which is in agreement
with previous results regarding functional sites (Landry
et al. 2009). Another explanation for the prevalence of
phosphorylation sites within unstructured regions is that
phosphorylation of structured regions is more likely disrupt
function. This is supported by the fact that there are fewer
consensus matches in structured regions in the targets
than expected (0.1846 in annotated targets vs. 0.2853
per 1,000 residues in nontargets). However, we also ob-
served a reduction in the birth rate of phosphorylation con-
sensus sites in bona fide targets relative to the nontargets,
indicating that spurious phosphorylation sites may disrupt
function even in the unstructured regions. Understanding
the constraints on the organization of regulatory sequences
in proteins is an important area for further research.
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Nevertheless, our evidence for “turnover” of character-
ized phosphorylation sites provides the microevolutionary
material for the plasticity in regulatory networks that has
been observed over longer evolutionary timescales (Jensen
et al. 2006; Moses, Liku, et al. 2007; Beltrao et al. 2009). This
plasticity in regulatory networks has also been seen in
other classes of regulatory elements, namely in transcrip-
tion factor binding sites. It is interesting to note that
the fraction of nonconserved phosphorylation sites found
in our study (>8.8% species divergent by 5-20 My; Kellis
et al. 2003) seems proportional to the fraction of noncon-
served functional transcription factor-binding sites when
comparing humans to mouse, where 36-40% of sites turn-
over (Dermitzakis and Clark 2002) during the 65-75 My
(Waterson et al. 2002) separating those species. Our finding
that the positions with high information content in phos-
phorylation sites shower fewer substitutions also mirrors
the patterns of evolution seen in transcription factor-bind-
ing sites (Moses et al. 2003). Therefore, we speculate that
conservation with a small rate of turnover is likely to be a
general feature of many other classes of regulatory elements.

Supplementary Material

Supplementary tables S1 and S2 and supplementary data
are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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