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This useful study describes expression profiling by scRNA-seq of thousands of cells of recombinant
yeast genotypes from a system that models natural genetic variation. The rigorous new method
presented here shows promise for improving the efficiency of genotype-to-phenotype mapping in
yeast, providing convincing evidence for its efficacy. This article focuses on overcoming technical
challenges with this approach and identifies several new biological insights that build upon the field
of genotype-to-phenotype mapping, a central question of interest to geneticists and evolutionary
biologists.

Abstract Genotype—phenotype mapping (GPM), or the association of trait variation to genetic
variation, has been a long-lasting problem in biology. The existing approaches to this problem
allowed researchers to partially understand within- and between-species variation as well as the
emergence or evolution of phenotypes. However, traditional GPM methods typically ignore the
transcriptome or have low statistical power due to challenges related to dataset scale. Thus, it is

not clear to what extent selection modulates transcriptomes and whether cis- or trans-regulatory
elements are more important. To overcome these challenges, we leveraged the cost efficiency and
scalability of single-cell RNA sequencing (scRNA-seq) by collecting data from 18,233 yeast cells from
4489 F2 segregants derived from an F1 cross between the laboratory strain BY4741 and the vine-
yard strain RM11-1a. More precisely, we performed expression quantitative trait loci (eQTL) mapping
with the scRNA-seq data to identify single-cell eQTL and transcriptome variation patterns associated
with fitness variation inferred from the segregant bulk fitness assay. Due to the larger scale of our
dataset and its multidimensionality, we could recapitulate results from decades of work in GPM from
yeast bulk assays while revealing new associations between phenotypic and transcriptomic varia-
tions at a broad scale. We evaluated the strength of the association between phenotype variation
and expression variation, revealed new hotspots of gene expression regulation associated with trait
variation, revealed new gene functions with high expression heritability, and highlighted the larger
aggregate effect of trans-regulation compared to cis-regulation. Altogether, these results suggest
that integrating large-scale scRNA-seq data into GPM improves our understanding of trait variation
in the context of transcriptomic regulation.
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Introduction

The process by which DNA encodes proteins via transcription and translation has been studied for
decades to make sense of organisms’ phenotypes. However, being able to explain organisms' pheno-
types from their genetic material, that is, genotype—-phenotype mapping (GPM), has been a long-
lasting problem with important applications (Bartoli and Roux, 2017; Ferreira et al., 2019). Indeed,
making sense of genetic variation at the phenotypic level enables the understanding of trait variation
between and within species as well as the emergence and evolution of phenotypes (Aguet et al.,
2023). For instance, reverse genetics approaches, for example, gene knockout or transgenic technolo-
gies, and forward genetics approaches like genome-wide association studies (GWAS) and quantitative
trait loci (QTL) mapping helped in determining the function of multiple genes and the effects of muta-
tions on growth in different environments (Tarantino and Eisener-Dorman, 2012). However, reverse
genetics approaches typically fail to account for natural variation and forward genetics approaches
like QTL mapping typically focus on genetic and phenotypic variation, so they cannot highlight selec-
tion on the transcriptome.

An essential characteristic of this problem is the multilayered organization of the GPM. Indeed,
GPM is not strictly restricted to the direct association between genotypes and phenotypes. This
association is better resolved and complemented by understanding the intermediary transcriptome
layer, for example, cell mechanisms at the transcriptomic level are involved in diseases and patho-
genicity (Ferreira et al., 2019, Casamassimi et al., 2017, Wainberg et al., 2019, Learn Science at
Scitable, 2023; Williams et al., 2022). However, it is not clear to what extent transcriptomic changes
relate to phenotypic changes or selection. Pioneering work from Mary-Claire King and Allan Charles
Wilson set the tone for investigating this question by proposing that variations in morphological and
behavioral traits arise more often through gene expression regulation than evolution at the protein-
coding level (King and Wilson, 1975). Francois Jacob then postulated an essay that stemmed from
this theory in which he highlights how evolution acts as a tinkerer that works from already avail-
able material, that is, through regulation of gene expression, to create new adaptations (Jacob,
1977). This constituted the core of the evolutionary developmental biology, which matured into the
still-debated claim that new adaptations mainly emerge through cis-regulation of gene expression,
that is, through noncoding DNA regulating a neighbor gene contrarily to trans-regulators acting
on distant genes (Hoekstra and Coyne, 2007; Kratochwil and Meyer, 2015; Primig et al., 2000;
Cavalieri et al., 2000). This debate has been reinforced by the technical difficulties and complexity
of assessing the evolution and outcome of mutations in non-coding regions (Hoekstra and Coyne,
2007; Kratochwil and Meyer, 2015). For example, although human GWAS loci are mostly identi-
fied in noncoding regions and have well-characterized cis-regulatory effects, their trans-regulatory
effects are usually challenging to detect (Maurano et al., 2012, Schaub et al., 2012; Nicolae et al.,
2010). Indeed, small effect sizes, multiple testing corrections, and high false-positive rates for trans-
regulation impose statistical and computational challenges for its detection (Dutta et al., 2022; Wang
et al., 2024). Advances in sequencing technologies helped to partially solve these issues, particu-
larly in the context of transcriptome analyses of the model organism Saccharomyces cerevisiae. For
instance, Brem et al., 2002 used microarray technology to relate the gene expression profiles of
40 yeast segregants from a lab (BY) and natural vineyard strain (RM) to their genetic markers (Brem
et al.,, 2002). They found that cis-acting modulation is the main mechanism for regulating gene
expression. Nearly two decades later, by greatly increasing statistical power, Albert et al., 2018
found that most of the expression variation arises through trans-regulation using non-multiplexed
RNA-seq to analyze 5720 genes in 1012 yeast segregants generated by a crossing between RM and
BY (Albert et al., 2018). The analysis method they used, that is, expression quantitative trait loci
(eQTL) mapping, consists of correlating allele frequencies to gene expression levels to find the loci
modulating expression.

Although eQTL mapping is a traditional GPM analysis that accounts for the transcriptomic layer, it is
typically realized through non-multiplexed RNA-seq which tends to have low statistical power due to
challenges with experimental scale and confounding factors (Schwarz et al., 2022; Fan et al., 2021).
Thus, eQTL mapping traditionally cannot identify significant low-effect regulatory mutations that are
important for understanding the genetic bases of complex traits and diseases (Bush and Moore,
2012; Lorenz and Cohen, 2012). Furthermore, most eQTL studies only assess the average transcrip-
tomic profile of bulk populations without being able to capture the profile of rare cell lineages within
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a population. This is a critical limitation in heterogeneous populations such as cancer or microbial
populations where rare lineages can drive relapse or drug resistance (Shaffer et al., 2017).

Here, we sought to circumvent the challenges of non-multiplexed bulk RNA-seq imposed by the
scale and population heterogeneity by performing eQTL mapping through single-cell RNA sequencing
(scRNA-seq) of a pool of ~4500 well-characterized F2 segregants derived from a yeast cross (Albert
et al., 2018; Bloom et al., 2013; Ehrenreich et al., 2010). In the same way that combinatorial
indexing/barcoding and multiplexing enable the collection of large-scale fitness and genotype data
(Nguyen Ba et al., 2022), we hypothesized that scRNA-seq could help us collect both genotype and
expression data on a large pool of segregants. We employ several strategies to overcome previous
obstacles of eQTL mapping studies: (i) we pool cells from thousands of F2 segregants during the
growth step and perform a single scRNA-seq run on the culture to account for environmental effects.
The expression profiles of these lineages cannot be captured cost-effectively with bulk RNA-seq as
pooling segregants in a single bulk assay would not capture individual strains’ expression profiles.
Moreover, (i) from the exome sequencing data of single cells, we take advantage of the reference
panel to validate that we accurately infer the genotype of each cell from extremely low number of
reads mapping to polymorphic sites per cell (effectively ~0.2x coverage). Finally, (iii) we leverage
the presence of thousands of high-coverage cells to train an unsupervised learning model to correct
(denoise) and infer an imputed expression profile of poorly covered cells.

Using this approach, we integrated the resulting transcriptomic data from growth in rich media
with a pre-existing yeast GPM to refine GPM features at a broad scale. For instance, we estimated the
heritability of the transcriptome and the extent to which the transcriptome is associated with fitness.
This allowed us to reveal that a negligible portion of expression variation is related to the studied
phenotype variation independently of genotypic variation. This implies that almost all the phenotypic
variation related to expression is also modulated by mutations. This differentiates our work from
previous bulk RNA-seq studies where expression is systematically controlled for differences in lineage
growth or phenotypes due to an assumption that a considerable amount of phenotypic variation is
related to expression independently of genomic mutations (Albert et al., 2018). We also show that
the increased scale of our scRNA-seq dataset enables single-cell eQTL mapping (sc-eQTL) and identi-
fies more hotspots of expression regulation containing previously identified QTL. We also exploit the
identified sc-eQTL to analyze the patterns of cis- and trans-regulation in the GPM.

Results and discussion

Our single-cell RNA-seq approach is consistent with yeast GPM results
from non-multiplexed assays

We initially aimed to show that performing scRNA-seq at a large scale can generate data that are
consistent with non-multiplexed DNA and RNA sequencing. For this purpose, we analyzed a dataset
of thousands of yeast lineages generated by Nguyen Ba et al., 2022 (Nguyen Ba et al., 2022). To
understand the yeast GPM, they collected fitness and genotype data from ~100,000 F2 segregants
derived from an F1 cross between a laboratory strain of yeast (BY) and a natural vineyard strain (RM)
(Figure 1A).

Using this approach named barcoded bulk QTL mapping or BB-QTL mapping, they revealed
the complex polygenic and pleiotropic nature of phenotypes as well as an unprecedented number
of pairwise epistatic interactions. To integrate transcriptomic data into this GPM, we performed
scRNA-seq using the 10X Genomics Chromium microfluidics platform (Vermeersch et al., 2022).
Other scRNA-seq methods like Smart-seq2 offer a better breadth of coverage per cell (Hwang et al.,
2018). However, due to the higher throughput or number of cells generated by 10X Chromium and
the different coverage profiles across cells from the same F2 segregant, it is more advantageous to
use 10X Chromium to capture transcriptomic variation and reconstruct the reference genomes from
single cells (Hwang et al., 2018; Jariani et al., 2020). The throughput of 10X Genomics is typically
in the order of 10* cells which limits us to a few thousand lineages per library if we want to obtain a
reasonable number of cells per lineage. This is why we focus on a single batch of 4489 F2 segregants.
This method allowed us to obtain both genotype and expression profiles from 18,233 cells of the
first batch of F2 segregants (Figure 1B). The F2 segregant barcodes are typically not expressed, so
single cells have their own cell barcode, which is included in all amplified reads of the same droplet.
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Figure 1. F2 yeast segregants datasets. (A) Reference panel and experiments from the barcoded bulk sequencing previously described in Nguyen

Ba et al., 2022. The 99,995 F2 yeast segregants in the reference panel were derived from an F1 cross between a laboratory strain of yeast (BY) and a
natural vineyard strain (RM). Thus, they only have two possible alleles at each of the 41,594 polymorphic sites. The lineage barcodes enabled fitness
estimation from competition assays in 18 environments recapitulating the adaptation to temperature gradients, the ability to process different sources
of carbon and the resistance to antifungal compounds. (B) Pooled scRNA-seq dataset from a single batch. We performed scRNA-seq of the first batch
of F2 segregants (n=4489) to obtain genotypes that are similar to the reference panel and cell’s expression profiles. The F2 segregant barcodes are
typically not expressed, so single cells have their own cell barcode, which is included in all amplified reads of the same droplet. Non-covered sites,
sequencing errors, and the presence of reads in the wrong library (index swapping) are corrected for using the Hidden Markov Models (HMM) described
in Figure 1—figure supplement 1. Each single-cell barcode association to a reference panel strain is validated using a permutation test (Figure 1—
figure supplement 2), and poor association was assessed using regression (Figure 1—figure supplement 3).

The online version of this article includes the following figure supplement(s) for figure 1:
Figure supplement 1. lllustration of scRNA-seq reads used to estimate the Hidden Markov Models (HMM) error rate parameters.
Figure supplement 2. Barcodes lineage assignment.

Figure supplement 3. Factors explaining the relatedness between scRNA-seq barcodes and their associated F2 segregant.

Although this short-read scRNA-seq is a high-throughput approach (Table 1), it comes with challenges
like gene dropouts and low sequencing depth in some cells caused by technical artifacts of PCR ampli-
fication (Lorenz and Cohen, 2012; Shaffer et al., 2017).

To overcome these challenges, the unique molecular identifiers (UMIs) of the 10X Genomics plat-
form provide a control for PCR amplification biases by quantifying gene expression from unique tran-
scribed molecule counts instead of sequencing read counts (Hwang et al., 2018). However, UMIs
still do not correct for dropouts or missing data in the expression profile, which could obscure poten-
tial associations between genotype and transcription (see below). We addressed this issue by fitting
an imputation model called DISCERN to the expression data (Hausmann et al., 2023). DISCERN is
a neural network that learns how to reconstruct the expression profile of high-coverage cells after
embedding it in a lower dimension. This eliminates the gene dropouts and denoises the expression
profile. The fact that the reconstructed expression is highly but not perfectly correlated to the original
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Table 1. scRNA-seq dataset features.

The doublets were defined as scRNA-seq barcodes with high coverage (= third quartile) without significant genotype association
to any F2 segregants and for which the two most similar F2 segregants do not share genotypic similarity (R? <0.1). The breadth of
coverage is defined as the proportion of BY/RM polymorphic sites covered in a single cell.

Metric Value
Library size 479,781,081
(number of reads)

Median number of covered genes per cell 1,311
Median number of 5,158
unique molecular identifiers per cell

Doublet rate 0.10
Average number of cell barcodes per F2 segregant 4.83
Polymorphic sites mean breadth of coverage 0.03

expression (mean R?=50.0%, median R?=52.9%; R?s.d.=10.1%) and the high variance explained by the
first principal component of the imputed expression (99.6%) is consistent with an effective denoising.
We take advantage of this denoised transcriptome for variance partitioning (as described later).

In addition, Hidden Markov Models (HMMs) can infer accurate genotype data even at sequencing
depths as low as 0.1x (Nguyen Ba et al., 2022). Nguyen Ba et al., 2022 designed an HMM to infer
the segregants genotypes from the observed reads at low depth of DNA sequencing by accounting
for sequencing error rate, recombination rate, and index swapping rate (Nguyen Ba et al., 2022). As
there are only two ancestral lineages, there are only two possible alleles for the strains at each of the
41,594 polymorphic sites. Thus, the genotype of the segregants can be represented by the frequency
of only one of the parental alleles, which is RM in the dataset. Applying this model to low-coverage
segregants yielded genotypes that are significantly similar to high-coverage replicates (Nguyen Ba
et al., 2022). We sought to use a similar model to infer genotypes from scRNA-seq data but we
anticipated that some of these parameters may differ due to increased error rate of the reverse tran-
scriptase, increased index swapping due to pooled reaction, etc (Figure 1—figure supplement 1).
In Nguyen Ba et al., those rates were heuristically determined, but here we estimated these from the
read mapping data and found that re-estimated parameters from data increased the proportion of
recovered strains in the single cell data from 58.6% to 65.7%.

After adapting the HMM to the scRNA-seq data, we sought to validate that the resulting cell geno-
types relate well to their corresponding strain in the reference panel obtained by non-multiplexed
DNA sequencing strategies. |deally, each single-cell barcode (from 10X Genomics Chromium) should
be associated with a single cell and a cell should have a clear match with a unique strain in the refer-
ence panel. However, several factors can obscure these associations, for example, a single-cell droplet
containing cells from two different strains, a low-coverage cell, uncertainty in the allele of the reference
genotype, etc. Thus, we designed an approach to assign cells to the correct reference panel strain
(see ‘Materials and methods’). This approach relies on two metrics of similarity between the cells and
the strains’ genotypes, that is, the expected distance between them, which should be minimized for
the best match, and the relatedness (R?). The statistical significance of the relatedness between single
cells and reference lineages was determined by a permutation test (Figure 1—figure supplement
2). From the read mapping alone, we obtained a mean R? of 0.59 (6=0.19 and median = 0.64), which
was significantly improved after applying our HMM to correct for misidentified alleles and imputing
data in low-coverage sites using recombination probability. Indeed, the single-cell HMM genotypes
yield a mean R? of 0.73 (5=0.18 and median = 0.81; Figure 2A). This approach was also successful
in a recent eQTL mapping on segregants with a similar genetic background (Boocock et al., 2025).
We found that the distribution of relatedness after HMM was still left-skewed, with a minority of cells
statistically significantly assigned to a reference genotype despite having what appeared to be low
relatedness. Upon investigation, it was found that these could be explained by sequencing coverage
and genotyping uncertainty in the single-cell and/or in the reference panel genotype(s) (Figure 1—
figure supplement 3; Supplementary file 1).
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Figure 2. Single-cell RNA-seq data recapitulate bulk DNA and RNA assays results. (A) Effect of the Hidden Markov Models (HMM) on the relatedness
between single-cell genotypes and their closest reference lineage. The single-cell original genotype represents the genotype of the cells before the
correction with the HMM. The relatedness to the closest lineage in batch 1 has been measured with the adjusted R% To control for genotype uncertainty,
only the 13,069 barcodes with a significant lineage assignment (lineage-barcode genotype correlation false discovery rate [FDR]<0.05) and a reference
lineage with lower uncertainty than the single cell HMM are selected, which represents 72.2% of the barcodes. We then rounded the genotypes to
remove the uncertainty during the comparison. Wilcoxon signed test p-value is indicated above the violin plots. (B) Narrow-sense heritability measured
with scRNA-seq consensus genotypes and non-multiplexed DNA sequencing. Three datasets are compared through a t-test on the bootstrap

Figure 2 continued on next page
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Figure 2 continued

narrow-sense heritabilities. The consensus genotypes of the batch 1 F2 segregants obtained from the associated scRNA-seq data (Figure 2—figure
supplement 1) are represented in blue, the batch 1 F2 segregant genotypes in the reference dataset (bulk sequencing) are represented in yellow

and the whole reference dataset of F2 segregants is represented in gray. For each dataset, the narrow-sense heritability has been measured from 500
random subsamples of 1000 F2 segregants. The bars represent the mean narrow-sense heritability, and the error bar length represents the 95% CI. The
results are illustrated for the 15 environmental conditions where a minority of batch 1 F2 segregants have missing fitness data. The 23C-30C represents
the temperature for the competition assay in YPD media while the other phenotypes represent growth on YNB, molasses (mol), mannose (Mann) or
raffinose (raff) and chemical resistance to copper sulfate (Cu), ethanol (eth), guanidinium chloride (gu), lithium acetate (Li), sodium dodecyl sulfate (SDS),
and suloctidil (suloc) (Nguyen Ba et al., 2022).

The online version of this article includes the following figure supplement(s) for figure 2:
Figure supplement 1. Performance of the consensus genotype methods.
Figure supplement 2. Comparison of the quantitative trait loci (QTL) mapping models for the 30C phenotype.

Figure supplement 3. Comparison of site features distribution across quantitative trait loci (QTL) models.

To further establish that the genotyping obtained from scRNA-seq data was comparable to
previous non-multiplexed genotyping of the reference genotype panel, we estimated the contribu-
tion of genetic variation to the phenotypic variation, that is, fitness heritability. Nguyen Ba et al.,
2022 estimated the narrow- and broad-sense heritabilities of complex phenotypes associated with
temperature gradient, carbon source, and chemical resistance for which RM and BY segregants exhibit
a significant level of diversity (Nguyen Ba et al., 2022). We used our lineage assignment to that
panel to obtain fitness but used our single-cell genotyping to perform this association (‘Materials and
methods’). Encouragingly, all GCTA-REML estimates of narrow-sense heritability in the scRNA-seq
batch 1 dataset (blue in Figure 2B) are similar to the estimates from Nguyen Ba et al., 2022 whether
or not we focus on batch 1 (yellow and gray rectangles in Figure 2B).

Although the variance partitioning is consistent with previous studies, it only provides a broad view
of the genotype-phenotype map as it does not allow the identification of the loci that significantly
explain phenotype variation. If the genotypes obtained by scRNA-seq were of high quality, then we
would expect that a QTL mapping model from scRNA-seq would yield a model similar to that of non-
multiplexed DNA sequencing data. To achieve this, we used a cross-validated stepwise forward linear
regression on the strain fitness and consensus genotypes data from single cells that shared the same
lineage assignment ('Materials and methods). Performing the QTL mapping on the batch 1 scRNA-seq
dataset enabled the identification of 29 QTL compared to 31 QTL identified with the bulk barcoded
approach (Supplementary files 2 and 3; Nguyen Ba et al., 2022). These QTL were largely similar as
shown by the non-significant difference between the effect sizes (Wilcoxon signed rank test p=0.29)
and by a model similarity metric (Nguyen Ba et al., 2022) that considers the recombination distance
between matched QTL, the similarity of the effect sizes and the allele frequencies (‘"Materials and
methods’). Using this approach, we estimated that the similarity score between the batch 1 single
cells QTL and the batch 1 BB-QTL is 86.2% while each model respectively had a similarity score of
78.7% and 78.2% with the full BB-QTL mapping performed on the 99,950 F2 segregants (Nguyen Ba
et al., 2022; Figure 2—figure supplement 2). The QTL identified from the scRNA-seq dataset also
recapitulated several important biological features of the reference panel such as an enrichment of
non-synonymous and disordered region QTL (Nguyen Ba et al., 2022; Figure 2—figure supplement
3). Then, we compared the distributions of these two site features in the full BB-QTL dataset, which
are similar in the scRNA-seq, to the distributions in the full set of SNPs using Fisher’s exact test and
odds ratios. We also performed the phenotype variance partitioning based on the QTL features to
identify which sites contribute the most to phenotype variations. Nonsynonymous sites have signifi-
cantly higher odds of being QTL than intergenic sites. The trend is modest (odds ratio = 2.17; Fisher's
exact test p=1.94e-4) and the difference with synonymous sites is not significant. Furthermore, disor-
dered sites have significantly higher odds of being QTL than intergenic sites, although the trend is
modest (odds ratio = 2.00; Fisher's exact test p=1.67e-2), but the difference with structured sites is
not significant.
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Integrating scRNA-seq data to an existing GPM highlights selection on
the transcriptome

Having shown that our scRNA-seq allows us to relate the cells to the corresponding F2 segregant fitness
data via the genotype relatedness, we next sought to highlight new associations within the BY/RM
GPM. Selection is often highlighted at the genotype level through convergent evolution, an increase
in allele frequency within a population, or population genetics metric (Bergstrém et al., 2014; Good
et al., 2017, Johnson et al., 2021). However, the central dogma of molecular biology and the evolu-
tion tinkering model both entail that phenotype variation should be linked to transcriptomic variation.
As our dataset included all these variables, we sought to evaluate the expression-genotype associa-
tion strength and provide a variance partitioning framework to evaluate the association between the
transcriptome and trait variation (‘Materials and methods’). The GCTA-REML variance partitioning
model used to estimate trait heritability in the previous section can also be modified to include gene
expression as the response variable and cell genotypes as the only random effect (‘Materials and
methods’). This enables the quantification of expression heritability, that is, the variance of expression
explained by genotype. Using this approach on our large-scale dataset, we estimated that genotype
explains 75.7% of expression variance. This estimate is weighted for expression levels as genes that
are more expressed account for more of the expression variation. At the individual gene level, the
genotype explains, on average, 35.4% of transcript level variation (6=4.51%; min = 31.0%; median
= 33.4%; max = 100%), which is slightly but significantly higher than previous estimates from non-
multiplexed eQTL mapping studies (Wilcoxon signed rank p<2.2e-16). Indeed, Albert et al., 2018
estimated that at the gene level, the genotype explains on average 30.0% of the expression variance
using a lower-power dataset of 5720 genes in 1012 yeast segregants generated by the same parental
strains (RM and BY).

In addition to expression heritability, our ‘one-pot’ approach and the multidimensionality of our
scRNA-seq dataset enable the evaluation of the association between traits and expression. This was
previously challenging with large-scale bulk RNA-seq experiments as they require batching strategies.
This results in batch effects, which are linked to environmental and technical variations that affect
lineages’ growth rates and expression. To eliminate this bias, Albert et al., 2018 controlled gene
expression levels for variation in growth rates across lineages, making it impossible to correlate fitness
to gene expression. Measuring the gene expression profiles of thousands of lineages simultaneously
removes the need for batching strategies as it allows us to collect enough transcriptomes to under-
stand the associations between different components of the genotype-phenotype map, which we
demonstrate with the 30C phenotype (Figure 3).

The components of this variance partitioning all relate to at least one biological phenomenon.
Indeed, the portion of trait variation explained exclusively by the genotype variation (red in Figure 3)
represents the effect of mutations on fitness via several biological phenomena, such as protein
stability, enzymatic function, etc, independent of expression level. For the 30C phenotype, this
component explains 20.9% of the fitness variation in the BY/RM background, which is lower than the
47.8% explained by the shared component between phenotype, genotype, and expression variations
(purple in Figure 3). The latter represents the association between selection (fitness) and the tran-
scriptome either through loci influencing fitness via expression directly, for example, a mutation in
the promoter, or through loci affecting expression via an effect on cell fitness (indirectly) (Sun et al.,
2020, Marguerat and Béhler, 2012). Its considerable association with fitness variation thus supports
the evolution and tinkering model for the 30C phenotype. As for the phenotype variation explained
exclusively by gene expression (blue in Figure 3), it could represent epigenetics and stochastic gene
expression, which weakly explain variations in the 30C phenotype (0.69%). Moreover, the total variance
explained by the model is consistent across sample sizes, highlighting the robustness of the GREML
method. However, increasing the sample size allowed an increase in the relative contribution of the
genotype-expression interaction component at the expense of the other components, suggesting
that increasing the scale of the dataset increases the confidence of the associations between expres-
sion and genotype changes that contribute to trait variation. We also note that denoising the expres-
sion data with DISCERN slightly increases the contribution of the genotype-expression interaction and
decreases the residual of the model by up to 8% (Figure 3—figure supplement 1).

Although this model explains a large proportion of the 30C phenotype variance and its herita-
bility, the residuals still represent ~30% of fitness variation (Figure 3). This could be explained by
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Figure 3. Variance partitioning of the 30C phenotype from scRNA-seq. We fitted F2 segregant fitness data to their cells' consensus genotype and
expression profiles using GTCA-GREML at different sample sizes. Because each segregant had multiple representatives/cells in the scRNA-seq data,
the consensus profile of these lineages has been obtained from the cell with the highest transcript level. The bars represent the proportion of the
fitness/phenotype variance across F2 segregants (whole rectangle area) explained by each model component. The size of the red genotype-exclusive
component is obtained by subtracting the size of the shared component from the variance explained by the model in Equation 2. The red cell
illustrates this effect as a mutation changes its fitness by modifying the structure of the transcript product. The size of the blue expression-exclusive
component is obtained by subtracting the size of the shared component from the variance explained by the model in Equation 3. An epigenetic
modification increasing the transcript level of the gene in the blue cell illustrates this effect. The purple area represents the effect of the interaction of
mutation and expression on fitness variation observed across the segregants. In the example shown, a mutation in the promoter changes the fitness of
the purple cell through a down-regulation of the gene expression. This component is obtained by subtracting the variance explained by the model in
Equations 1 or 2 from the one in Equation 4, as there is a shared component of trait variation explained by genotype and expression variation. Finally,
the black bar represents the model’s residual, which includes any phenomenon that causes fitness variation that we did not explicitly measure and
include in the model. The size of the residuals is obtained by subtracting the sum of the size of all the defined components (red + blue + purple) from 1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Denoising the expression data with DISCERN decreases the residuals of the variance partitioning model.

unmeasured factors like high-order epistasis. However, the broad-sense heritability of this phenotype
is similar to the narrow-sense heritability, suggesting that the residuals are mostly not explained by
genotype and expression (Nguyen Ba et al., 2022). Nguyen Ba et al., 2022 also estimated that
epistasis only explained around 5% of fitness (Nguyen Ba et al., 2022). Other factors like mitochon-
drial mutations, post-transcriptional changes, protein—protein interactions, or other protein proper-
ties could play a role in explaining the residual of the model and are good candidates to extend this
analysis. These results suggest that a single run of scRNA-seq on a single batch of F2 yeast segregants
converges with bulk DNA sequencing results while refining broad-scale features of the GPM.

The increased scale of scRNA-seq enables the discovery of new eQTL

Our integrative scRNA-seq approach is not limited to enabling the quantification of the association
between transcriptomic changes and trait variation. Indeed, the same approach we used to identify
QTL can be used to detect loci regulating gene expression which can reveal the cell mechanisms
underlying trait variation through transcriptomic changes. We thus modified the QTL mapping frame-
work such that the response variable is the level of expression of a single gene in the single cells
('Materials and methods’). Because our cells are not synchronized, differences in the cell cycle could
create transcriptomic variation that could obscure the association with genotypic variation. To control
for this, we averaged out the effect of cell cycle by reconstructing the consensus expression and
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genotype profiles of each segregant significantly associated to the cells. This approach is a cost-
efficient way to perform eQTL mapping from the expression profile and genotype of cells from thou-
sands of lineages in a multiplexed way (sc-eQTL mapping).

Consistent with yeast non-multiplexed eQTL results, the genes with the highest expression herita-
bility are enriched in functions related to carbohydrate catabolic process (GO:0016052) and cellular
biosynthetic process (translation GO:0006412, organelle assembly GO:0070925, ribosome biogenesis
GO0:0042254 and gene expression GO:0010467) (Fisher's exact test false discovery rate FDR<0.05;
‘Materials and methods’). In both datasets, these genes are also highly expressed, which reflects the
positive correlation between expression heritability and expression levels (R?=0.81 and p<2.2e-16).
Although some of these highly expressed genes have important functions modulated by mutations,
their higher heritability could also be explained by higher statistical power to measure heritability
when expression counts are higher. Moreover, genes with the lowest expression heritability observed
in the RM/BY background, which we defined as the bottom 10% expression heritability, are enriched
in functions related to the cell cycle biological process (GO:0007049, Fisher's exact test FDR <0.05)
which is consistent with bulk RNA-seq eQTL (Albert et al., 2018, Mi et al., 2019). This does not
suggest that genes with this function are not important for variation in gene expression at the whole-
genome scale but rather that mutations observed in the RM/BY background are not correlated with
variation in the expression of these specific genes. This could reflect conservation for genes involved
in the cell cycle biological process (Bihler, 2005; Yu et al., 2006).

Because of the increased scale of our collection, our approach is more powered to estimate the
gene expression heritability. Indeed, we detected a median of 21 eQTL per gene (u=34.3, 6=29.7),
which is almost four times higher than what has been detected by the largest non-multiplexed RNA-
seq dataset in the same genetic background (Albert et al., 2018). This is expected as the power to
detect trait loci is positively correlated to the sample size (Nguyen Ba et al., 2022). We validated this
trend in our dataset by performing a power analysis with the 10 most heritable genes (Figure 4—
figure supplement 1; linear regression adjusted R?=0.95 and p<0.05), which had the following func-
tions: glycolysis, gluconeogenesis, pentose phosphate pathways, AMP metabolism, and chaperone.
These newly detected eQTL probably have small effect sizes as they only allow to increase the expres-
sion heritability by 5% on average. However, for the 3730 out of 6240 genes (59.8%) that have higher
expression heritability in our dataset, this increase is on average 15.7%. We were also able to detect
new overrepresented biological processes, that is, the DNA metabolic process (GO:0006259) and the
response to nutrient levels (GO:0031667), for which the variation of expression levels is weakly asso-
ciated with the genetic variation observed across the F2 RM/BY segregants.

The functional enrichment analysis using scRNA-seq data revealed new associations between
expression heritability and biological processes in the RM/BY genetic background. However, while
it suggests that many eQTL are also QTL, it cannot accurately point to the specific loci involved in
trait variation and cannot address whether mutations on regulatory hubs have stronger effects on
traits. To investigate this, we mapped the QTL to hotspots of gene regulation (or regulatory hubs),
which we defined as 25 kb genomic windows that were repeatedly identified in the eQTL mapping
procedure (for different genes). This was done to acknowledge the uncertainty in the exact position
of the eQTL due to linkage disequilibrium and power. We then ranked the 30C QTL identified by
Nguyen Ba et al., 2022 based on their absolute effect size and correlated it to the rank of the eQTL
hotspots based on the number of regulated genes. This resulted in a positive correlation (Spearman
o =0.33 and p=5.21e-5), suggesting that larger effects on the regulatory network translate into larger
trait variation. Indeed, we observed that some previously reported high-effect-size QTL genes are
located in eQTL hotspots, for example, MKT1, HAP1, and IRA2 (Figure 4A).

Performing this rank test on individual genes also yielded the result that eQTL effect is correlated
with the fitness effect for 35.1% of the genes (permutation test p<0.05, see ‘Materials and methods’).
Although this correlation does not apply to most genes, it highlights potential regulatory mechanisms
explaining the importance of the strongest growth loci or QTL. For instance, MKTT1, that is, the stron-
gest growth loci, is part of a regulation hotspot affecting genes that are important for yeast growth
like ENP1 which is involved in RNA processing and HXTé which is involved in glucose uptake (Roos
et al., 1997, Chen et al., 2003; Roy et al., 2015). Among the strongest growth loci, VPS70 is part of
a hotspot of regulation that strongly affects the expression of RSF2, a zinc-finger protein regulating
glycerol-based growth and respiration (Lu et al., 2005). Furthermore, the highest peaks for expression
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Figure 4. Expression quantitative trait loci (eQTL) features underlying trait variation across the BY/RM segregants. (A) Mapping of the 30 C QTL in
the eQTL hotspots. We represent the hotspots of expression regulation as genomic windows (25 kb) to acknowledge the uncertainty around the real
position of the eQTL due to linkage disequilibrium. We annotated the top 5 eQTL hotspots and the eQTL hotspots in which the top additive QTL
identified by the BB-QTL mapping of the 30C phenotype are located. In these regions, we represented the most affected trans-regulated genes in
red, the most affected cis-regulated gene in blue, and the top QTL genes in black. The double quotation characters represent the absence of such

Figure 4 continued on next page
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genes in the associated region. We also represented the rank of the QTL in the set of 159 QTL of the 30C phenotype. (B) Partitioning of the expression
heritability or explained variance (R? among cis- and trans-eQTL. Each pair of points connected by a line represents a gene. Green lines represent the
genes that only have trans-eQT,L and orange lines represent the genes that have both trans- and cis-eQTL. (C) Comparison of the mean effect size
between cis- and trans-eQTL. Each pair of points connected by a line represents a gene. The line color represents the ratio of the average effect size
between cis- and trans-eQTL. The sample size of each eQTL category is represented in the x-axis. This is the number of trans-eQTL and cis-eQTL used
for calculating the average effect sizes per gene not the number of points per distribution.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The number of detected expression quantitative trait loci (eQTL) revealed by scRNA-seq increases with sample size.

regulation contain important growth loci on chromosome IV (13th and 23rd strongest QTL among 159
QTL; Figure 4A). This hotspot is also responsible for regulating TDH3, which is involved in glycolysis
and gluconeogenesis and can have an important effect on fitness (Vande Zande et al., 2022). A
recent eQTL mapping study on segregants with a similar genetic background that also leverages one-
pot scRNA-seq and genotype inference also identified such hotspots of regulation and highlighted
their role in the trade-off between reproduction and cell cycle progression (Boocock et al., 2025).

The presence of these hotspots suggests that expression differences in BY/RM would predomi-
nantly be explained by mutations in trans-regulatory elements. To test this, we partitioned the vari-
ation in gene expression between cis- and trans-regulatory loci for each gene (see ‘Materials and
methods’). This analysis revealed that all the genes are affected by at least one polymorphic trans-
regulatory locus and that these polymorphic trans-regulatory loci explain most of that gene’s expres-
sion (Figure 4B). It is well known that mutations in promoters and nearby enhancers can influence
gene expression (Mattioli et al., 2020; Romero et al., 2012). Indeed, we identified many genes that
contained an allele in a cis-regulatory element that strongly explains that gene’s expression variation
(n=750 genes out of 6088, Figure 4B). As expected, mutations in cis-regulatory elements were of
stronger effect size than trans-eQTL individually, but the cumulative aggregate effect of all trans-eQTL
acting on that gene was comparable to the few cis-eQTL they had (Figure 4C). This can be explained
by the fact that there are more opportunities for mutations to arise in trans-regulatory elements.
Finally, we found that trans-eQTLs have two times higher odds of affecting cell fitness than cis-eQTL
(x? p=0.01). Furthermore, by repeating our eQTL hotspot analysis with Albert et al., 2018 data,
we observed a non-significant association between eQTL hotspot and QTL (% ? p=0.50). In that bulk
RNA-seq dataset, QTL have less odds of being in eQTL hotspots compared to other loci (odds ratio
= 0.72) while in this scRNA-seq dataset, QTL odds of being in eQTL hotspots are two times higher
than other loci. This could be explained by the smaller sample size of that bulk RNA-seq dataset and
by the fact that they control for differences in growth across lineages. Taken together, these results
suggest that the link between the genetic basis of transcription variation across RM/BY segregants
and fitness could only be revealed by integrating large-scale transcriptomic data to an existing GPM,
which scRNA-seq facilitates.

Conclusion
By leveraging the scalability of scRNA-seq, we obtained thousands of transcriptomes from a reference
pool of strains in a single experiment. This enabled the analysis of the association between genotype,
transcriptome, and phenotype at an unprecedented scale. Questions surrounding transcriptomic
variation and phenotypic variation have been at the center of many previous quantitative genetics
studies (Wang et al., 2024; Brem et al., 2002; Albert et al., 2018; Bloom et al., 2013; Brem et al.,
2005; Bloom et al., 2019, Westra et al., 2013; Yao et al., 2017; Liu et al., 2019). For instance, how
strong is the connection between the transcriptome and trait variation? Although most GWAS loci are
located at noncoding regions and are well-characterized for cis-regulation effects, is trans-regulation
more important for phenotypic and expression variation? What are the gene functions that are the
most heritable and modulable at the expression level? These ideas and discoveries all support the fact
that researchers can gain valuable insight into the evolution of traits by integrating the transcriptome
in GPM analyses, which can translate into fundamental knowledge or other important applications
where phenotypes evolve.

In this study, we took advantage of a previously characterized BY/RM cross where the genetic basis
of growth in various environments was examined in detail (Nguyen Ba et al., 2022). By integrating
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transcriptomic data in this genotype-phenotype map, we identified transcriptome components that
are involved in trait variation and evaluated their contribution. Similar to a previous study, which
obtained transcriptomes by individual strain sequencing, we found that gene expression is highly
heritable. Further, our study design also allowed us to conclude that gene expression contributes to a
significant portion of the phenotypic variation in this strain collection.

This finding is corroborated by our findings that most eQTL detected in our study were previously
shown to be QTL. This is perhaps not surprising given that QTL in this cross were previously inferred to
be in regulatory genes, but this provides a more mechanistic view of the effect of an allele on pheno-
type. Indeed, we find a bias for trans-regulation for generating transcription innovation where the
cumulative effect of trans-eQTL on gene expression is significant. That is not to say that cis-regulatory
alleles are dispensable as cis-regulatory alleles often have a large effect on gene expression. This is
similar to studies on human transcriptomes where trans-eQTL are cumulatively more impactful and
enriched in sets of complex trait loci (Wang et al., 2024; Westra et al., 2013; Yao et al., 2017,
Liu et al., 2019). This genome-wide view of the genetic basis of transcriptional variation has conse-
quences for the evolution of phenotypes as the target size afforded by trans-eQTL is far larger than
cis-eQTL. Thus, adaptation to small and fluctuating environmental changes may proceed preferen-
tially through allelic changes or recombination of many small-effect trans-eQTL, but large expression
changes are likely to require some cis-eQTL.

In this study, we leveraged the availability of genotype and phenotype data on our pool of strains.
This was obtained by liquid handling robotics and pooled competitive growth assay with barcode
sequencing. While this was performed on a very large scale, it was essentially obtained by brute force
and through approaches that are not necessarily applicable to other systems. Although it is clear from
our results that single-cell sequencing can achieve the same genotype quality as single-reaction geno-
typing, it is much harder to obtain phenotype data from scRNA-seq. Thus, our framework might not
be readily translatable to other systems where similar studies on the GPM are desirable. However, two
observations from this cross can be used to suggest an experimental approach. First, while epistasis
is important, it contributes to a relatively small portion of the phenotypic variance. Second, transcrip-
tomic variation contributes little to the missing heritability. Thus, it may be possible to use predicted
fitness instead of observed fitness and recapitulate findings from this study. Indeed, the phenotype
under study has a negligible component of its variance explained by transcription independent of the
genotype, but this feature was unknown before the study. This alternative approach can only relate
expression to the heritable component of traits, which would have missed this variance explained by
transcription independent of the genotype and explains why we did not employ it. Predicted fitness
could be obtained from bulk-segregant analysis where the additive effect of loci can be inferred from
whole-genome sequencing (Ehrenreich et al., 2010; Brauer et al., 2006). However, it is unclear
whether the proposed experimental approach is generalizable in other contexts, and collecting fitness
data may not be necessary if a GPM analysis is already available for the studied system.

Despite the study’s limitation on generalizability, our scRNA-seq framework helps bridge the
understanding of how genetic variation influences transcriptomic variation at a broad scale. Our
framework relies on identifying the genome of single cells from the transcriptome, which is going to
be possible from low-coverage sequencing when genetic variation within the pool is high (such as this
cross, microbiome sequencing, or cancer cells with extensive copy number variation), and from low
cell diversity with sufficient transcriptomic variation such that aggregation of single cells with similar
transcriptomes can afford pseudo-high coverage sequencing. Although we restricted the scope of
this work to broad-scale transcriptomic and genomic patterns related to trait variation, we demon-
strated that it is possible to integrate large-scale transcriptome data into an existing GPM, which can
be exploited in the future for more fine-scale analysis like co-expression analysis and highlighting
how specific trans-regulatory patterns within the cell network lead to trait variation. For instance,
identifying new eQTL could enable a better understanding of the gene network by highlighting the
downstream trans-regulatory effects of mutations and their association with trait variation. For most
of the genes, this newly discovered eQTL explained more than 15% of their transcript level variation
on average and could help characterize how cells react to environmental changes. Moreover, the fact
that it is an integrative approach allowed us to evaluate the association between phenotypes, expres-
sion, and mutations. Although we did not validate the strength of this association for multiple traits
and biological systems, this approach is readily available to help screen for traits that are evolving
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independently of eQTL if weak correlations between phenotypic variation and genotype-expression
interaction are observed, that is, phenotypes driven by epigenetics. Finally, the residuals of the model
could help hypothesize on the contribution of unmeasured phenomena like protein—protein interac-
tion, gene content variation, or post-transcriptional modification, although it could be modest. Thus,
integrating genotype, transcriptome, and phenotype using scRNA-seq data can be particularly effi-
cient for developing a better understanding of other important traits or diseases.

Materials and methods

Yeast strains and segregants

We analyzed cells from a single batch (batch 1) of 4489 F2 segregants obtained from a F1 cross
between the yeast laboratory strain BY4741 and the vineyard strain RM11-1a generated in a previous
study (Nguyen Ba et al., 2022). These strains have been selected to generate this collection of segre-
gants because they exhibit differences in multiple phenotypes including the adaptation to tempera-
ture, the ability to process different sources of carbon, and the ability to resist antifungal compounds.
Therefore, the genetic variation observed across the segregants can be correlated to the differences
in growth rate observed in the 18 environments recapitulating these phenotypes in the Nguyen Ba
et al., 2022 study (Nguyen Ba et al., 2022). The selection of the batch is random, and the fact that
we performed the analyses on a single batch eliminates batch effects that could obscure variable
associations. Genotypes and fitness data used were the same ones obtained in the previous studly.

Yeast growth and single-cell RNA-sequencing protocol

To prepare strains for scRNA sequencing, we unfroze the batch of segregants and inoculated approx-
imately 5*10¢ cells in YPD (1% yeast extract, 2% peptone, 2% dextrose) to saturation. The next day,
about 107 cells were passaged to 5 mL of fresh YPD and grew for 4 hours to bring cells to log phase.
We then pelleted 100 ul of cells and resuspended them in spheroplasting solution (5 mg/mL zymolyase
20T, 10 mM DTT, 1 M sorbitol, 100 mM sodium phosphate pH 7.4) at a concentration of 107 cells/
mL. The cells were incubated at 37°C for approximately 10 minutes at which point spheroplasting
was verified by mixing a small aliquot of cells with detergent to observe lysis. The cells at this point
were quantified using a hemocytometer and prepared using the standard 10X Genomics Gel Beads-
in-emulsion (GEM) protocol. We used the Chromium Next GEM Single-cell 3’ Reagent Kit to prepare
the sequencing libraries and sequenced on a NextSeq 500 high-output flow cell.

We note that the cells analyzed here were grown in bulk and assayed for their transcriptome in log
phase. Our fitness data was obtained from competitive bulk fitness assays which include several whole
growth cycles over multiple days and thus capture lag phase, exponential growth, and saturation.
Nevertheless, previous experiments had shown that fitness was mostly determined by exponential
growth, which suggests that our analysis is adequate even if the cells were prepared for sequencing
at a single time point.

Single-cell RNA-sequencing data parsing

From the scRNA-seq reads, we obtained gene expression levels and allele counts using the pipeline
count from CellRanger version 3.1.0 (Zheng et al., 2017). For each of the ancestral strains, that is,
RM11-1a and BY4741, the pipeline mapped the scRNA-seq reads to the reference genome, filtered
the barcodes by comparing the UMI count per barcode distribution to a background model of empty
gel-bead in-emulsion, and counted the number of UMI per gene per barcode. The barcode filtering
retained 18,233 barcodes. For each barcode, we then counted the number of RM and BY alleles
at each polymorphic site by parsing the RM and BY bam files using a Python script (https://github.
com/arnaud00013/sc-eQTL/tree/main/ll_scRNA-seq_genotyping). This script only keeps reads that
mapped at the same loci on both reference genomes to increase the level of confidence of the

mapping.

Correction and imputation of single-cell genotypes with an HMM

Because there are only two possible alleles at each polymorphic site of the F2 RM/BY segregants,
their genotype can be recapitulated by a quantitative variable measuring the proportion of reads
from one of the parental strains, which is RM in our dataset. The raw allele count data provides a
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first estimate of this RM allele frequency at each polymorphic site. However, due to the low mean
depth of coverage of scRNA-seq data (0.2x), the absence of reads in some polymorphic sites and the
biases introduced during sequencing like index hopping/swapping, we expect that the raw data can
be imputed and corrected for errors and uncertainty in the observed alleles. Therefore, we applied a
Hidden Markov Model (HMM) on the observed allele count. Such a model can infer accurate geno-
type data at sequencing depths as low as 0.1x (Nguyen Ba et al., 2022; Hwang et al., 2018; Stark
et al., 2019). Nguyen Ba et al., 2022 designed an HMM to infer the segregants genotypes from bulk
DNA sequencing by accounting for sequencing error rate, recombination rate, and index swapping
rate (Nguyen Ba et al., 2022). Because scRNA-seq uses the reverse transcriptase, which has a higher
error rate, and because it is a pooled assay with higher chances of index swapping, we expected the
HMM parameter to differ for the single cell data. Therefore, we adapted the HMM to scRNA-seq data
by measuring its parameters in our dataset (Figure 1—figure supplement 1). The scripts are available
on GitHub (https://github.com/arnaud00013/sc-eQTL/tree/main/Il_scRNA-seq_genotyping).

Assigning single cells to the reference panel strains
To evaluate the level of relatedness between the reference panel strains and the imputed single-cell
genotypes, we used the expected distance to identify the strain that best relates to each single cell:

41594
Expected distance (gc, gs) = Z 8c+ 8s — 28¢8s (1
i=1
where g is the cell genotype and g; is the strain genotype. Next, we assigned the single cell to its best
match in the studied batch of 4489 trains only if this match is better than the best match in randomly
generated batches of the same size (Figure 1—figure supplement 2). This procedure is implemented
and available at https://github.com/arnaud00013/sc-eQTL/tree/main/lll_Genotype_analysis.

Partitioning the phenotypic variance into genetic and transcriptomic
components

To analyze the yeast GPM at a broad scale and evaluate the association between selection and the
transcriptome, we estimated the contribution of genetic and transcriptomic variations to phenotypic
variation from scRNA-seq data. More precisely, we performed a Genome-wide Complex Trait Analysis
(GCTA) by fitting a linear mixed model to the data using the restricted maximum-likelihood (REML)
method (Yang et al., 2011):

y=XB+ Weug + ¢4 2)
y=XB+ Weute + €¢ (3)
y=XB+ Woug + Weute + € 4)

—

where y is the fitness vector for the n segregants with a significant association to batch 1 cells, Xis the
n x k matrix of k fixed effects, 3 is the vector of k coefficients of the fixed effects, W, is the n x p geno-
type matrix, ug is the vector of p SNP effects, W, is the n x m expression matrix, u. is the vector of m
gene expression effects, and ¢ is the error term. To decrease the effect of gene dropouts and noise in
the gene expression profile of each cell, we fitted an imputation model called DISCERN to the expres-
sion data (Hausmann et al., 2023). DISCERN is an autoencoder that learns how to reconstruct the
expression profile of high-coverage cells after embedding it in a lower dimension. These operations
eliminate the gene dropouts and denoises the expression profile. We also controlled for the effect of
the cell cycle on gene expression by using the consensus F2 segregants expression and genotypes
from the associated cell data. The consensus data has been obtained using the cell with the maximum
read count. Because the dataset does not include fixed effects, we set the fixed effect to a vector of
ones such that its coefficients represent the mean fitness while the genotype and expression data are
the random effects that explain the fitness variance along with the error terms. The REML solution
assumes that the data follow a Gaussian distribution, so the data are standardized before fitting the
model. We also divided the standardized expression counts by the cell sum of expression counts to
control for molecule count biases across cells. The cell fitness is based on the fitness of the closest
segregant in batch 1 as measured by the expected distance. Because this model is linear and addi-
tive, it can be compared to the estimates of narrow-sense heritability obtained by Nguyen Ba et al.,

N'Guessan et al. eLife 2024;13:RP93906. DOI: https://doi.org/10.7554/eLife.93906 15 of 22


https://doi.org/10.7554/eLife.93906
https://github.com/arnaud00013/sc-eQTL/tree/main/II_scRNA-seq_genotyping
https://github.com/arnaud00013/sc-eQTL/tree/main/III_Genotype_analysis

e Llfe Research article

Evolutionary Biology | Genetics and Genomics

2022 (Nguyen Ba et al., 2022). The difference between the variance explained in Equation 4 and
Equation 2 or 3 allow to infer the variance explained only by the genotype or the expression compo-
nent of the model. The code for the variance partitioning is available on GitHub (https://github.com/
arnaud00013/sc-eQTL/tree/main/IV_variance_partitioning).

Estimating the expression heritability from scRNA-seq

To obtain this estimate from scRNA-seq data, we considered the fact that GCTA-REML only takes a
vector as a response variable while the gene expression matrix is multi-dimensional. To solve this, we
orthogonalized the gene expression matrix using principal component analysis (PCA) and used its
first PC, which explains 99.6% of the variance, as a response variable of the model. In case 99% of the
expression matrix is explained by more than one PC, it is possible to use a weighted sum to obtain the
expression heritability. Indeed, if the expression PCs recapitulate the total expression variance and are
orthogonal or independent to each other, then the sum of the PCs variance explained by genotype
should be the expression heritability. If ‘k" is the number of PCs explaining at least 99% of expression
variance:

k
Expression heritability = Z PC; eigenvalue * “PC; ~ genotype” model R* (5)
i=1

QTL mapping

To identify the loci that influence cell fitness, we performed a linear regression on the consensus geno-
types of the strains from the scRNA-seq data and the strain fitness. We decided to use the consensus
genotypes of the strains as they relate better to the bulk segregant genomes. To build the consensus
genotypes, we defined cells from the same lineage as the ones that shared the same closest F2 segre-
gant in batch 1. Next, we used the median to obtain cells' consensus genotypes as it is less sensitive
to outliers and because it yields the best relatedness to the batch 1 reference genotypes (median
R?=87.0%; p=79.5%; c=18.2; Figure 2—figure supplement 1). We selected the QTL in the linear
models using cross-validation on the scRNA-seq data. This analysis consists of dividing the dataset
into 10 random partitions of similar sample sizes and running a cross-validated stepwise forward linear
regression on each partition. For each partition, the model starts with no QTL and a linear model
‘Fitness ~Genotype' is fitted using the genotype data at each polymorphic site, where the correlation
coefficient represents the effect size of the SNP. Then, the forward search starts and at each iteration,
a new locus with the minimum linear model residual sum of squares (RSS) is added to the QTL model,
which is updated with new effect sizes after the addition of a new SNP. Because the order of addition
of QTL matters in the forward search and because some QTL are linked or collinear, the model can be
refined by exploring different QTL around the local optima. These steps are repeated until the model
RSS cannot be improved anymore or until the number of QTL reaches an arbitrary maximum far from
the cross-validated number of QTL. After the forward search is completed in each partition, the algo-
rithm calculates the optimal A values that minimize the objective function F,:

F, (B) = RSS (B) + Lasso penalty ()
1Y = XBII3 + AlIBlo ©)

where f is the vector of SNP effect sizes in the QTL model, ||Y — Xﬂ||§ is the RSS of the linear QTL
model, 2 defines the penalty for adding a new SNP to the model, and || 3|, is the number of SNPs
in the QTL model. This objective function has the property to add sparsity in the QTL model and
thus avoid overestimating the number of QTL while being consistent (Nguyen Ba et al., 2022). The
optimal 4 has a minimum of log(n) which corresponds to the Bayesian information criterion (BIC), which
is known to yield correct models asymptotically (Harrell, 2001). This allows us to consider the possi-
bility that a sparser model than the one found using the BIC could yield better predictive power on a
test set while avoiding overfitting. The optimal 1 values found in all the partitions are then averaged
and the resulting mean 1 is used to solve the objective function in the full dataset, which yields the
optimal QTL model. The cross-validation assumes that the partitions are independent, such that the
variance explained by the model and the number of relevant QTL are unbiased estimates.
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Highlighting hotspots of gene regulation through eQTL mapping

To identify the loci regulating gene expression regulation, we adapted the QTL mapping framework
using expression as the predicted phenotype. Because this approach had to be repeated for each of
the 6240 genes, we needed to modify it so that the execution time was convenient. To do so, the
parameter A was not estimated using cross-validation but rather from the BIC, that is, 1 =log(n)
where n is the number of cells. We found that the BIC was often selected by the cross-validation
procedure when tested on a few genes and thus we do not believe that this approach will significantly
change our results.

To acknowledge the uncertainty around the exact position of eQTL due to linkage disequilib-
rium, we define eQTL hotspots as 25 kb genomic windows that were repeatedly identified in the
eQTL mapping procedure. Finally, we defined hotspots of gene regulation as genomic windows in
the fourth quantile of the distribution of the number of regulated genes per window and the fourth
quantile of the number of eQTL per window. The code for the single-cell eQTL mapping is available
on GitHub (https://github.com/arnaud00013/sc-eQTL/tree/main/V_sc_eQTL_mapping).

Functional enrichment analysis by gene ontology annotation

To highlight gene functions enriched at different levels of expression or expression heritability, we
performed the Panther database binomial test for statistical overrepresentation of gene ontology
biological processes (Mi et al., 2019, Thomas et al., 2022). A low level was defined as within the
25% bottom part of the distribution (<Q1) while a high level was defined as within the top 25% part
of the distribution (>Q3). The p-values were corrected for multiple testing using the false discovery
rate correction (FDR).

Matching QTL to eQTL

To evaluate the contribution of gene expression regulation to fitness variation, we created a model
to match QTL and eQTL based on the similarity of loci and the similarity of predicted effect on
gene expression. More precisely, for each of the 6088 genes for which we could detect eQTL, we
performed a new eQTL model by correlating the expression level of the gene to the genetic variation
at QTL positions. This allowed us to measure the predicted effect of the QTL on gene expression. We
then calculated the distance between the QTL and the real eQTL of the gene based on recombina-
tion distance within each chromosome, which decreases exponentially with genetic distance, and the
difference in the predicted effect on the gene expression using the formulation developed by Nguyen
Ba et al., 2022. Next, we used the same Needleman-Wunsch algorithm to find the most likely set of
pairing between QTL and eQTL, where an unmatched QTL is also possible but penalized. Finally, we
determined the proportion of genes for which gene expression regulation is associated with higher
fitness. To do so, for each gene, we performed a permutation test by comparing the average rank of
the matched QTL of the gene to the average rank of 999 random subsets of unmatched QTL of the
same size. The p-value is the proportion of random subsets of unmatched QTL with a higher average
QTL rank than the set of matched QTL.

Comparing cis- and trans-eQTL contribution to expression variation

We used the definition of local eQTL in Albert et al., 2018 to define cis-eQTL, that is, any eQTL
between 1000 bp upstream of the gene and 200 bp downstream of the gene. Thus, we defined
trans-eQTL as the eQTL that do not follow this criterion. For each gene, we then performed variance
partitioning using the GCTA:

y=XB+ Wy ug . + € cis (7)
v = X3 + Wy sranstig_trans + Etrans (8)
y=XB8+ ngcisugicis + Wy transttg trans + € 9

where y is the vector of expression level of the gene across the n cells, Xis the n x k matrix of k fixed
effects,  is the vector of k coefficients of the fixed effects, Wy ;s is the n x p cis-eQTL genotype
matrix, ug s is the vector of p cis-eQTL effects on expression, Wy srans is the n x m trans-eQTL expres-
sion matrix, ue is the vector of m trans-eQTL effects on expression, and e represent the error terms.
Because the dataset does not include fixed effects, we set the fixed effect to a vector of ones such
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that its coefficients represent the mean expression level while the cis-eQTL and trans-eQTL genotypes
are the random effects that explain the expression variance along with the error terms. We can infer
the variance explained by the cis-eQTL by the difference in variance explained between the models in
Equations 8 and 9. Likewise, the difference of variance explained by the models in Equations 7 and
9 can help us estimate the variance explained by the trans-eQTL. Finally, we estimate the effect sizes
using the absolute value of the correlation coefficients of each loci and compare the median between
the cis- and trans-eQTL from the same gene (paired data) with a Wilcoxon signed rank test.

Acknowledgements

ANNB acknowledges support from the Natural Science and Engineering Research Council of Canada
(NSERC RGPIN-2021-02716 and DGECR-2021-00117), and AN acknowledges support from the
Natural Science and Engineering Research Council (NSERC CGS-D App Id: 569340-2022, UTF Fellow-
ship from the University of Toronto and Rustom H Dasture Graduate Scholarship in Cell and Systems
Biology). The computations in this paper were enabled by resources provided by Compute Canada.
We also thank the Centre for the Analysis of Genome Evolution and Function (CAGEF) and TCAG at
SickKids for sequencing support.

Additional information

Funding
Funder Grant reference number Author
Natural Sciences and RGPIN-2021-02716 Alex N Nguyen Ba

Engineering Research
Council of Canada

Natural Sciences and DGECR-2021-00117 Alex N Nguyen Ba
Engineering Research
Council of Canada

Natural Sciences and CGS-D: 569340-2022 Arnaud N'Guessan
Engineering Research
Council of Canada

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions

Arnaud N'Guessan, Conceptualization, Data curation, Formal analysis, Investigation, Methodology,
Writing — original draft, Writing — review and editing; Wen Yuan Tong, Conceptualization, Investiga-
tion; Hamed Heydari, Software; Alex N Nguyen Ba, Conceptualization, Data curation, Formal anal-
ysis, Supervision, Funding acquisition, Validation, Investigation, Methodology, Writing — original draft,
Project administration, Writing — review and editing

Author ORCIDs
Arnaud N'Guessan @ https://orcid.org/0000-0002-3385-725X
Alex N Nguyen Ba @ https://orcid.org/0000-0003-1357-6386

Peer review material

Reviewer #1 (Public review): https://doi.org/10.7554/elife.93906.5.5a1
Reviewer #2 (Public review): https://doi.org/10.7554/elife.93906.5.sa2
Author response https://doi.org/10.7554/elife.93906.5.sa3

Additional files

Supplementary files
Supplementary file 1. Predictors of the relatedness between high-coverage cells and their closest
batch 1 lineage. We used these variables as explanatory variables in a linear regression model where

N'Guessan et al. eLife 2024;13:RP93906. DOI: https://doi.org/10.7554/eLife.93906 18 of 22


https://doi.org/10.7554/eLife.93906
https://orcid.org/0000-0002-3385-725X
https://orcid.org/0000-0003-1357-6386
https://doi.org/10.7554/eLife.93906.5.sa1
https://doi.org/10.7554/eLife.93906.5.sa2
https://doi.org/10.7554/eLife.93906.5.sa3

e Llfe Research article

Evolutionary Biology | Genetics and Genomics

the relatedness of the high-coverage cells was the response variable. The high-coverage cells were
defined as having a coverage in the top 25% of the distribution (>Q3). The data were normalized
before performing the linear regression and the influence of the predictors is ranked in decreasing
order from top to bottom of the table.

Supplementary file 2. QTL identified from the bulk fitness and DNA sequencing assays.

Supplementary file 3. QTL identified from single cells HMM-corrected genotypes and closest lineage
fitness.

MDAR checklist

Data availability

The code used for this study is available and explained at https://github.com/arnaud00013/sc-eQTL
(copy archived at N’Guessan, 2025) and the original single-cell reads from the pooled segregants
scRNA-seq assay have been uploaded in the NCBI BioProject database with the accession number
PRINA1022775. The single-cell barcodes expression data are also available at https://github.com/
arnaud00013/sc-eQTL as an archive file named Matrix_gene_expression_barcodes_1_to_9000.csv.tar.
gz or Matrix_gene_expression_barcodes_9001_to_18233.csv.tar.gz.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier
N'Guessan A, Tong 2025 Refining the resolution https://www.ncbi.nlm. NCBI BioProject,

WY, Heydari H, of the yeast genotype- nih.gov/bioproject/?  PRINA1022775

Nguyen Ba AN phenotype map using term=PRINA1022775

single-cell RNA-sequencing

References

Aguet F, Alasoo K, Li YI, Battle A, Im HK, Montgomery SB, Lappalainen T. 2023. Molecular quantitative trait loci.
Nature Reviews Methods Primers 3:1-22. DOI: https://doi.org/10.1038/s43586-022-00188-6

Albert FW, Bloom JS, Siegel J, Day L, Kruglyak L. 2018. Genetics of trans-regulatory variation in gene
expression. eLife 7:e35471. DOI: https://doi.org/10.7554/elife.35471, PMID: 30014850

Bahler J. 2005. Cell-cycle control of gene expression in budding and fission yeast. Annual Review of Genetics
39:69-94. DOI: https://doi.org/10.1146/annurev.genet.39.110304.095808, PMID: 16285853

Bartoli C, Roux F. 2017. Genome-wide association studies in plant pathosystems: toward an ecological genomics
approach. Frontiers in Plant Science 8:763. DOI: https://doi.org/10.3389/fpls.2017.00763, PMID: 28588588

Bergstrom A, Simpson JT, Salinas F, Barré B, Parts L, Zia A, Nguyen Ba AN, Moses AM, Louis EJ, Mustonen V,
Warringer J, Durbin R, Liti G. 2014. A high-definition view of functional genetic variation from natural yeast
genomes. Molecular Biology and Evolution 31:872-888. DOI: https://doi.org/10.1093/molbev/msu037, PMID:
24425782

Bloom JS, Ehrenreich IM, Loo WT, Lite TLV, Kruglyak L. 2013. Finding the sources of missing heritability in a yeast
cross. Nature 494:234-237. DOI: https://doi.org/10.1038/nature 11867, PMID: 23376951

Bloom JS, Boocock J, Treusch S, Sadhu MJ, Day L, Oates-Barker H, Kruglyak L. 2019. Rare variants contribute
disproportionately to quantitative trait variation in yeast. eLife 8:e49212. DOI: https://doi.org/10.7554/¢elife.
49212, PMID: 31647408

Boocock J, Alexander N, Alamo Tapia L, Walter-McNeill L, Patel SP, Munugala C, Bloom JS, Kruglyak L. 2025.
Single-cell eQTL mapping in yeast reveals a tradeoff between growth and reproduction. eLife 13:RP95566.
DOI: https://doi.org/10.7554/eLife.95566

Brauer MJ, Christianson CM, Pai DA, Dunham MJ. 2006. Mapping novel traits by array-assisted bulk segregant
analysis in Saccharomyces cerevisiae. Genetics 173:1813-1816. DOI: https://doi.org/10.1534/genetics.106.
057927, PMID: 16624899

Brem RB, Yvert G, Clinton R, Kruglyak L. 2002. Genetic dissection of transcriptional regulation in budding yeast.
Science 296:752-755. DOI: https://doi.org/10.1126/science. 1069516, PMID: 11923494

Brem RB, Storey JD, Whittle J, Kruglyak L. 2005. Genetic interactions between polymorphisms that affect gene
expression in yeast. Nature 436:701-703. DOI: https://doi.org/10.1038/nature03865, PMID: 16079846

Bush WS, Moore JH. 2012. Chapter 11: genome-wide association studies. PLOS Computational Biology
8:¢1002822. DOI: https://doi.org/10.1371/journal.pcbi. 1002822, PMID: 23300413

Casamassimi A, Federico A, Rienzo M, Esposito S, Ciccodicola A. 2017. Transcriptome profiling in human
diseases: new advances and perspectives. International Journal of Molecular Sciences 18:1652. DOI: https://
doi.org/10.3390/ijms 18081652, PMID: 28758927

Cavalieri D, Townsend JP, Hartl DL. 2000. Manifold anomalies in gene expression in a vineyard isolate of
Saccharomyces cerevisiae revealed by DNA microarray analysis. PNAS 97:12369-12374. DOI: https://doi.org/
10.1073/pnas.210395297, PMID: 11035792

N'Guessan et al. eLife 2024;13:RP93906. DOI: https://doi.org/10.7554/eLife.93906 19 of 22


https://doi.org/10.7554/eLife.93906
https://github.com/arnaud00013/sc-eQTL
https://github.com/arnaud00013/sc-eQTL
https://github.com/arnaud00013/sc-eQTL
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1022775
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1022775
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1022775
https://doi.org/10.1038/s43586-022-00188-6
https://doi.org/10.7554/eLife.35471
http://www.ncbi.nlm.nih.gov/pubmed/30014850
https://doi.org/10.1146/annurev.genet.39.110304.095808
http://www.ncbi.nlm.nih.gov/pubmed/16285853
https://doi.org/10.3389/fpls.2017.00763
http://www.ncbi.nlm.nih.gov/pubmed/28588588
https://doi.org/10.1093/molbev/msu037
http://www.ncbi.nlm.nih.gov/pubmed/24425782
https://doi.org/10.1038/nature11867
http://www.ncbi.nlm.nih.gov/pubmed/23376951
https://doi.org/10.7554/eLife.49212
https://doi.org/10.7554/eLife.49212
http://www.ncbi.nlm.nih.gov/pubmed/31647408
https://doi.org/10.7554/eLife.95566
https://doi.org/10.1534/genetics.106.057927
https://doi.org/10.1534/genetics.106.057927
http://www.ncbi.nlm.nih.gov/pubmed/16624899
https://doi.org/10.1126/science.1069516
http://www.ncbi.nlm.nih.gov/pubmed/11923494
https://doi.org/10.1038/nature03865
http://www.ncbi.nlm.nih.gov/pubmed/16079846
https://doi.org/10.1371/journal.pcbi.1002822
http://www.ncbi.nlm.nih.gov/pubmed/23300413
https://doi.org/10.3390/ijms18081652
https://doi.org/10.3390/ijms18081652
http://www.ncbi.nlm.nih.gov/pubmed/28758927
https://doi.org/10.1073/pnas.210395297
https://doi.org/10.1073/pnas.210395297
http://www.ncbi.nlm.nih.gov/pubmed/11035792

e Llfe Research article

Evolutionary Biology | Genetics and Genomics

Chen W, Bucaria J, Band DA, Sutton A, Sternglanz R. 2003. Enp1, a yeast protein associated with U3 and U14
snoRNAs, is required for pre-rRNA processing and 40S subunit synthesis. Nucleic Acids Research 31:690-699.
DOI: https://doi.org/10.1093/nar/gkg 145, PMID: 12527778

Dutta D, He Y, Saha A, Arvanitis M, Battle A, Chatterjee N. 2022. Aggregative trans-eQTL analysis detects
trait-specific target gene sets in whole blood. Nature Communications 13:4323. DOI: https://doi.org/10.1038/
s41467-022-31845-9, PMID: 35882830

Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L. 2010. Dissection
of genetically complex traits with extremely large pools of yeast segregants. Nature 464:1039-1042. DOI:
https://doi.org/10.1038/nature08923, PMID: 20393561

Fan Y, Zhu H, Song Y, Peng Q, Zhou X. 2021. Efficient and effective control of confounding in eQTL mapping
studies through joint differential expression and Mendelian randomization analyses. Bioinformatics 37:296-302.
DOI: https://doi.org/10.1093/bioinformatics/btaa715

Ferreira MA, Gamazon ER, Al-Ejeh F, Aittomaki K, Andrulis IL, Anton-Culver H, Arason A, Arndt V, Aronson KJ,
Arun BK, Asseryanis E, Azzollini J, Balmanfa J, Barnes DR, Barrowdale D, Beckmann MW, Behrens S, Benitez J,
Bermisheva M, Biatkowska K, et al. 2019. Genome-wide association and transcriptome studies identify target
genes and risk loci for breast cancer. Nature Communications 10:1741. DOI: https://doi.org/10.1038/s41467-
018-08053-5, PMID: 30988301

Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. 2017. The dynamics of molecular evolution over
60,000 generations. Nature 551:45-50. DOI: https://doi.org/10.1038/nature24287, PMID: 29045390

Harrell FE. 2001. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and
Survival Analysis. Springer. DOI: https://doi.org/10.1007/978-1-4757-3462-1

Hausmann F, Ergen C, Khatri R, Marouf M, Hanzelmann S, Gagliani N, Huber S, Machart P, Bonn S. 2023.
DISCERN: deep single-cell expression reconstruction for improved cell clustering and cell subtype and state
detection. Genome Biology 24:212. DOI: https://doi.org/10.1186/s13059-023-03049-x, PMID: 37730638

Hoekstra HE, Coyne JA. 2007. The locus of evolution: evo devo and the genetics of adaptation. Evolution;
International Journal of Organic Evolution 61:995-1016. DOI: https://doi.org/10.1111/j.1558-5646.2007.00105.
x, PMID: 17492956

Hwang B, Lee JH, Bang D. 2018. Single-cell RNA sequencing technologies and bioinformatics pipelines.
Experimental & Molecular Medicine 50:1-14. DOI: https://doi.org/10.1038/s12276-018-0071-8, PMID:
30089861

Jacob F. 1977. Evolution and tinkering. Science 196:1161-1166. DOI: https://doi.org/10.1126/science.860134,
PMID: 860134

Jariani A, Vermeersch L, Cerulus B, Perez-Samper G, Voordeckers K, Van Brussel T, Thienpont B, Lambrechts D,
Verstrepen KJ. 2020. A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag
phase in budding yeast. eLife 9:¢55320. DOI: https://doi.org/10.7554/eLife.55320, PMID: 32420869

Johnson MS, Gopalakrishnan S, Goyal J, Dillingham ME, Bakerlee CW, Humphrey PT, Jagdish T, Jerison ER,
Kosheleva K, Lawrence KR, Min J, Moulana A, Phillips AM, Piper JC, Purkanti R, Rego-Costa A, McDonald MJ,
Nguyen Ba AN, Desai MM. 2021. Phenotypic and molecular evolution across 10,000 generations in laboratory
budding yeast populations. eLife 10:€63910. DOI: https://doi.org/10.7554/eLife.63910, PMID: 33464204

King MC, Wilson AC. 1975. Evolution at two levels in humans and chimpanzees. Science 188:107-116. DOI:
https://doi.org/10.1126/science.1090005, PMID: 1090005

Kratochwil CF, Meyer A. 2015. Evolution: tinkering within gene regulatory landscapes. Current Biology
25:R285-R288. DOI: https://doi.org/10.1016/j.cub.2015.02.051, PMID: 25829014

Learn Science at Scitable. 2023. Transcriptome: connecting the genome to gene function. https://www.nature.
com/scitable/topicpage/transcriptome-connecting-the-genome-to-gene-function-605/ [Accessed August 31,
2023].

Liu X, Li YI, Pritchard JK. 2019. Trans effects on gene expression can drive omnigenic inheritance. Cell 177:1022—
1034. DOI: https://doi.org/10.1016/j.cell.2019.04.014, PMID: 31051098

Lorenz K, Cohen BA. 2012. Small- and large-effect quantitative trait locus interactions underlie variation in yeast
sporulation efficiency. Genetics 192:1123-1132. DOI: https://doi.org/10.1534/genetics.112.143107, PMID:
22942125

Lu L, Roberts GG, Oszust C, Hudson AP. 2005. The YJR127C/ZMS1 gene product is involved in glycerol-based
respiratory growth of the yeast Saccharomyces cerevisiae. Current Genetics 48:235-246. DOI: https://doi.org/
10.1007/s00294-005-0023-4, PMID: 16208474

Marguerat S, Béhler J. 2012. Coordinating genome expression with cell size. Trends in Genetics 28:560-565.
DOI: https://doi.org/10.1016/j.tig.2012.07.003, PMID: 22863032

Mattioli K, Oliveros W, Gerhardinger C, Andergassen D, Maass PG, Rinn JL, Melé M. 2020. Cis and trans effects
differentially contribute to the evolution of promoters and enhancers. Genome Biology 21:210. DOI: https://
doi.org/10.1186/s13059-020-02110-3, PMID: 32819422

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J,
Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, et al.
2012. Systematic localization of common disease-associated variation in regulatory DNA. Science 337:1190-
1195. DOI: https://doi.org/10.1126/science. 1222794, PMID: 22955828

Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, Thomas PD. 2019. Protocol update for large-scale
genome and gene function analysis with the PANTHER classification system (v.14.0). Nature Protocols 14:703-
721. DOI: https://doi.org/10.1038/s41596-019-0128-8, PMID: 30804569

N'Guessan et al. eLife 2024;13:RP93906. DOI: https://doi.org/10.7554/eLife.93906 20 of 22


https://doi.org/10.7554/eLife.93906
https://doi.org/10.1093/nar/gkg145
http://www.ncbi.nlm.nih.gov/pubmed/12527778
https://doi.org/10.1038/s41467-022-31845-9
https://doi.org/10.1038/s41467-022-31845-9
http://www.ncbi.nlm.nih.gov/pubmed/35882830
https://doi.org/10.1038/nature08923
http://www.ncbi.nlm.nih.gov/pubmed/20393561
https://doi.org/10.1093/bioinformatics/btaa715
https://doi.org/10.1038/s41467-018-08053-5
https://doi.org/10.1038/s41467-018-08053-5
http://www.ncbi.nlm.nih.gov/pubmed/30988301
https://doi.org/10.1038/nature24287
http://www.ncbi.nlm.nih.gov/pubmed/29045390
https://doi.org/10.1007/978-1-4757-3462-1
https://doi.org/10.1186/s13059-023-03049-x
http://www.ncbi.nlm.nih.gov/pubmed/37730638
https://doi.org/10.1111/j.1558-5646.2007.00105.x
https://doi.org/10.1111/j.1558-5646.2007.00105.x
http://www.ncbi.nlm.nih.gov/pubmed/17492956
https://doi.org/10.1038/s12276-018-0071-8
http://www.ncbi.nlm.nih.gov/pubmed/30089861
https://doi.org/10.1126/science.860134
http://www.ncbi.nlm.nih.gov/pubmed/860134
https://doi.org/10.7554/eLife.55320
http://www.ncbi.nlm.nih.gov/pubmed/32420869
https://doi.org/10.7554/eLife.63910
http://www.ncbi.nlm.nih.gov/pubmed/33464204
https://doi.org/10.1126/science.1090005
http://www.ncbi.nlm.nih.gov/pubmed/1090005
https://doi.org/10.1016/j.cub.2015.02.051
http://www.ncbi.nlm.nih.gov/pubmed/25829014
https://www.nature.com/scitable/topicpage/transcriptome-connecting-the-genome-to-gene-function-605/
https://www.nature.com/scitable/topicpage/transcriptome-connecting-the-genome-to-gene-function-605/
https://doi.org/10.1016/j.cell.2019.04.014
http://www.ncbi.nlm.nih.gov/pubmed/31051098
https://doi.org/10.1534/genetics.112.143107
http://www.ncbi.nlm.nih.gov/pubmed/22942125
https://doi.org/10.1007/s00294-005-0023-4
https://doi.org/10.1007/s00294-005-0023-4
http://www.ncbi.nlm.nih.gov/pubmed/16208474
https://doi.org/10.1016/j.tig.2012.07.003
http://www.ncbi.nlm.nih.gov/pubmed/22863032
https://doi.org/10.1186/s13059-020-02110-3
https://doi.org/10.1186/s13059-020-02110-3
http://www.ncbi.nlm.nih.gov/pubmed/32819422
https://doi.org/10.1126/science.1222794
http://www.ncbi.nlm.nih.gov/pubmed/22955828
https://doi.org/10.1038/s41596-019-0128-8
http://www.ncbi.nlm.nih.gov/pubmed/30804569

ELlfe Research article

Evolutionary Biology | Genetics and Genomics

N’'Guessan A. 2025. sc-eQTL. swh:1:rev:1e0e2109014ab62cc6636fb2359186dc25d43f8d. Software Heritage.
https://archive.softwareheritage.org/swh:1:dir:1f48a94eaaS5b5e6ca2ff97c2cf184428c24ad43c;origin=https://
github.com/arnaud00013/sc-eQTL;visit=swh:1:snp:0582150141774b4b277101658eecc119e9791467;anchor=
swh:1:rev:1e0e2109014ab62cc66361b2359186dc25d43f8d

Nguyen Ba AN, Lawrence KR, Rego-Costa A, Gopalakrishnan S, Temko D, Michor F, Desai MM. 2022. Barcoded
bulk QTL mapping reveals highly polygenic and epistatic architecture of complex traits in yeast. eLife
11:e73983. DOI: https://doi.org/10.7554/eLife. 73983, PMID: 35147078

Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. 2010. Trait-associated SNPs are more likely to be
eQTLs: annotation to enhance discovery from GWAS. PLOS Genetics 6:1000888. DOI: https://doi.org/10.
1371/journal.pgen.1000888, PMID: 20369019

Primig M, Williams RM, Winzeler EA, Tevzadze GG, Conway AR, Hwang SY, Davis RW, Esposito RE. 2000. The
core mejotic transcriptome in budding yeasts. Nature Genetics 26:415-423. DOI: https://doi.org/10.1038/
82539, PMID: 11101837

Romero IG, Ruvinsky |, Gilad Y. 2012. Comparative studies of gene expression and the evolution of gene
regulation. Nature Reviews. Genetics 13:505-516. DOI: https://doi.org/10.1038/nrg3229, PMID: 22705669

Roos J, Luz JM, Centoducati S, Sternglanz R, Lennarz WJ. 1997. ENP1, an essential gene encoding a nuclear
protein that is highly conserved from yeast to humans. Gene 185:137-146. DOI: https://doi.org/10.1016/
s0378-1119(96)00661-0, PMID: 9034325

Roy A, Dement AD, Cho KH, Kim JH. 2015. Assessing glucose uptake through the yeast hexose transporter 1
(Hxt1). PLOS ONE 10:e0121985. DOI: https://doi.org/10.1371/journal.pone.0121985, PMID: 25816250

Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. 2012. Linking disease associations with regulatory
information in the human genome. Genome Research 22:1748-1759. DOI: https://doi.org/10.1101/gr.136127.
111, PMID: 22955986

Schwarz T, Boltz T, Hou K, Bot M, Duan C, Loohuis LO, Boks MP, Kahn RS, Ophoff RA, Pasaniuc B. 2022.
Powerful eQTL mapping through low-coverage RNA sequencing. HGG Advances 3:100103. DOI: https://doi.
org/10.1016/j.xhgg.2022.100103, PMID: 35519825

Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, Beqiri M, Sproesser K, Brafford PA, Xiao M,
Eggan E, Anastopoulos IN, Vargas-Garcia CA, Singh A, Nathanson KL, Herlyn M, Raj A. 2017. Rare cell
variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546:431-435. DOI:
https://doi.org/10.1038/nature22794, PMID: 28607484

Stark R, Grzelak M, Hadfield J. 2019. RNA sequencing: the teenage years. Nature Reviews. Genetics 20:631-
656. DOI: https://doi.org/10.1038/s41576-019-0150-2, PMID: 31341269

Sun XM, Bowman A, Priestman M, Bertaux F, Martinez-Segura A, Tang W, Whilding C, Dormann D, Shahrezaei V,
Marguerat S. 2020. Size-dependent increase in RNA polymerase Il Initiation rates mediates gene expression
scaling with cell size. Current Biology 30:1217-1230. DOI: https://doi.org/10.1016/].cub.2020.01.053, PMID:
32059768

Tarantino LM, Eisener-Dorman AF. 2012. Forward genetic approaches to understanding complex behaviors.
Current Topics in Behavioral Neurosciences 12:25-58. DOI: https://doi.org/10.1007/7854_2011_189, PMID:
22297575

Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou L-P, Mi H. 2022. PANTHER: Making genome-scale
phylogenetics accessible to all. Protein Science 31:8-22. DOI: https://doi.org/10.1002/pro.4218, PMID:
34717010

Vande Zande P, Hill MS, Wittkopp PJ. 2022. Pleiotropic effects of trans-regulatory mutations on fitness and
gene expression. Science 377:105-109. DOI: https://doi.org/10.1126/science.abj7185, PMID: 35771906

Vermeersch L, Jariani A, Helsen J, Heineike BM, Verstrepen KJ. 2022. Single-cell RNA sequencing in yeastyeast
using the 10x genomics chromium device. In: Devaux F (Ed). Yeast Functional Genomics: Methods and
Protocols. Springer US. p. 3-20. DOI: https://doi.org/10.1007/978-1-0716-2257-5_1

Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, Ermel R, Ruusalepp A,
Quertermous T, Hao K, Bjorkegren JLM, Im HK, Pasaniuc B, Rivas MA, Kundaje A. 2019. Opportunities and
challenges for transcriptome-wide association studies. Nature Genetics 51:592-599. DOI: https://doi.org/10.
1038/s41588-019-0385-z, PMID: 30926968

Wang L, Babushkin N, Liu Z, Liu X. 2024. Trans-eQTL mapping in gene sets identifies network effects of genetic
variants. Cell Genomics 4:100538. DOI: https://doi.org/10.1016/j.xgen.2024.100538, PMID: 38565144

Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, Christiansen MW, Fairfax BP,

Schramm K, Powell JE, Zhernakova A, Zhernakova DV, Veldink JH, Van den Berg LH, Karjalainen J, Withoff S,

Uitterlinden AG, Hofman A, Rivadeneira F, Reinmaa E, et al. 2013. Systematic identification of trans eQTLs as
putative drivers of known disease associations. Nature Genetics 45:1238-1243. DOI: https://doi.org/10.1038/
ng.2756, PMID: 24013639

Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. 2022. An introduction to spatial transcriptomics for
biomedical research. Genome Medicine 14:68. DOI: https://doi.org/10.1186/s13073-022-01075-1, PMID:
35761361

Yang J, Lee SH, Goddard ME, Visscher PM. 2011. GCTA: a tool for genome-wide complex trait analysis.
American Journal of Human Genetics 88:76-82. DOI: https://doi.org/10.1016/.ajhg.2010.11.011, PMID:
21167468

Yao C, Joehanes R, Johnson AD, Huan T, Liu C, Freedman JE, Munson PJ, Hill DE, Vidal M, Levy D. 2017.
Dynamic role of trans regulation of gene expression in relation to complex traits. American Journal of Human
Genetics 100:571-580. DOI: https://doi.org/10.1016/j.ajhg.2017.02.003, PMID: 28285768

N'Guessan et al. eLife 2024;13:RP93906. DOI: https://doi.org/10.7554/eLife.93906 21 of 22


https://doi.org/10.7554/eLife.93906
https://archive.softwareheritage.org/swh:1:dir:1f48a94eaa5b5e6ca2ff97c2cf184428c24ad43c;origin=https://github.com/arnaud00013/sc-eQTL;visit=swh:1:snp:b58215014f774b4b277101658eecc119e9791467;anchor=swh:1:rev:1e0e2109014ab62cc6636fb2359186dc25d43f8d
https://archive.softwareheritage.org/swh:1:dir:1f48a94eaa5b5e6ca2ff97c2cf184428c24ad43c;origin=https://github.com/arnaud00013/sc-eQTL;visit=swh:1:snp:b58215014f774b4b277101658eecc119e9791467;anchor=swh:1:rev:1e0e2109014ab62cc6636fb2359186dc25d43f8d
https://archive.softwareheritage.org/swh:1:dir:1f48a94eaa5b5e6ca2ff97c2cf184428c24ad43c;origin=https://github.com/arnaud00013/sc-eQTL;visit=swh:1:snp:b58215014f774b4b277101658eecc119e9791467;anchor=swh:1:rev:1e0e2109014ab62cc6636fb2359186dc25d43f8d
https://doi.org/10.7554/eLife.73983
http://www.ncbi.nlm.nih.gov/pubmed/35147078
https://doi.org/10.1371/journal.pgen.1000888
https://doi.org/10.1371/journal.pgen.1000888
http://www.ncbi.nlm.nih.gov/pubmed/20369019
https://doi.org/10.1038/82539
https://doi.org/10.1038/82539
http://www.ncbi.nlm.nih.gov/pubmed/11101837
https://doi.org/10.1038/nrg3229
http://www.ncbi.nlm.nih.gov/pubmed/22705669
https://doi.org/10.1016/s0378-1119(96)00661-0
https://doi.org/10.1016/s0378-1119(96)00661-0
http://www.ncbi.nlm.nih.gov/pubmed/9034325
https://doi.org/10.1371/journal.pone.0121985
http://www.ncbi.nlm.nih.gov/pubmed/25816250
https://doi.org/10.1101/gr.136127.111
https://doi.org/10.1101/gr.136127.111
http://www.ncbi.nlm.nih.gov/pubmed/22955986
https://doi.org/10.1016/j.xhgg.2022.100103
https://doi.org/10.1016/j.xhgg.2022.100103
http://www.ncbi.nlm.nih.gov/pubmed/35519825
https://doi.org/10.1038/nature22794
http://www.ncbi.nlm.nih.gov/pubmed/28607484
https://doi.org/10.1038/s41576-019-0150-2
http://www.ncbi.nlm.nih.gov/pubmed/31341269
https://doi.org/10.1016/j.cub.2020.01.053
http://www.ncbi.nlm.nih.gov/pubmed/32059768
https://doi.org/10.1007/7854_2011_189
http://www.ncbi.nlm.nih.gov/pubmed/22297575
https://doi.org/10.1002/pro.4218
http://www.ncbi.nlm.nih.gov/pubmed/34717010
https://doi.org/10.1126/science.abj7185
http://www.ncbi.nlm.nih.gov/pubmed/35771906
https://doi.org/10.1007/978-1-0716-2257-5_1
https://doi.org/10.1038/s41588-019-0385-z
https://doi.org/10.1038/s41588-019-0385-z
http://www.ncbi.nlm.nih.gov/pubmed/30926968
https://doi.org/10.1016/j.xgen.2024.100538
http://www.ncbi.nlm.nih.gov/pubmed/38565144
https://doi.org/10.1038/ng.2756
https://doi.org/10.1038/ng.2756
http://www.ncbi.nlm.nih.gov/pubmed/24013639
https://doi.org/10.1186/s13073-022-01075-1
http://www.ncbi.nlm.nih.gov/pubmed/35761361
https://doi.org/10.1016/j.ajhg.2010.11.011
http://www.ncbi.nlm.nih.gov/pubmed/21167468
https://doi.org/10.1016/j.ajhg.2017.02.003
http://www.ncbi.nlm.nih.gov/pubmed/28285768

ELlfe Research article Evolutionary Biology | Genetics and Genomics

Yu L, Pefa Castillo L, Mnaimneh S, Hughes TR, Brown GW. 2006. A survey of essential gene function in the yeast
cell division cycle. Molecular Biology of the Cell 17:4736-4747. DOI: https://doi.org/10.1091/mbc.e06-04-
0368, PMID: 16943325

Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J,
Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M,

Wyatt PW, Hindson CM, Bharadwaj R, et al. 2017. Massively parallel digital transcriptional profiling of single
cells. Nature Communications 8:14049. DOI: https://doi.org/10.1038/ncomms 14049, PMID: 28091601

N'Guessan et al. eLife 2024;13:RP93906. DOI: https://doi.org/10.7554/eLife.93906 22 of 22


https://doi.org/10.7554/eLife.93906
https://doi.org/10.1091/mbc.e06-04-0368
https://doi.org/10.1091/mbc.e06-04-0368
http://www.ncbi.nlm.nih.gov/pubmed/16943325
https://doi.org/10.1038/ncomms14049
http://www.ncbi.nlm.nih.gov/pubmed/28091601

	Refining the resolution of the yeast genotype–phenotype map using single-­cell RNA-­sequencing
	eLife Assessment
	Introduction
	﻿Results and discussion﻿
	Our single-cell RNA-seq approach is consistent with yeast GPM results from non-multiplexed assays
	Integrating scRNA-seq data to an existing GPM highlights selection on the transcriptome
	The increased scale of scRNA-seq enables the discovery of new eQTL
	Conclusion

	Materials and methods
	Yeast strains and segregants
	Yeast growth and single-cell RNA-sequencing protocol
	Single-cell RNA-sequencing data parsing
	Correction and imputation of single-cell genotypes with an HMM
	Assigning single cells to the reference panel strains
	Partitioning the phenotypic variance into genetic and transcriptomic components
	Estimating the expression heritability from scRNA-seq
	QTL mapping
	Highlighting hotspots of gene regulation through eQTL mapping
	Functional enrichment analysis by gene ontology annotation
	Matching QTL to eQTL
	Comparing cis- and trans-eQTL contribution to expression variation

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Peer review material

	Additional files
	Supplementary files

	References


