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Microbial experimental evolution in a massively 
multiplexed and high-throughput era 
Tanush Jagdish1,* and Alex N Nguyen Ba2,3,*   

Experimental evolution with microbial model systems has 
transformed our understanding of the basic rules underlying 
ecology and evolution. Experiments leveraging evolution as a 
central feature put evolutionary theories to the test, and modern 
sequencing and engineering tools then characterized the 
molecular basis of adaptation. As theory and experimentations 
refined our understanding of evolution, a need to increase 
throughput and experimental complexity has emerged. Here, 
we summarize recent technologies that have made high- 
throughput experiments practical and highlight studies that 
have capitalized on these tools, defining an exciting new era in 
microbial experimental evolution. Multiple research directions 
previously limited by experimental scale are now accessible for 
study and we believe applying evolutionary lessons from in vitro 
studies onto these applied settings has the potential for major 
innovations and discoveries across ecology and medicine. 
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Introduction 
If decades of studying evolution have taught us any
thing, it is that life finds a way. But how? Understanding 
the pace and variety of evolutionary solutions, the pre
dictability and repeatability of adaptation, and the 

interplay between evolution and complex cellular net
works has been central to evolutionary biology. Yet, 
given the complexity of the natural world and the large 
uncertainties about distant evolutionary pasts, these 
questions are impossible to directly probe outside the 
context of carefully controlled experiments. The field of 
experimental evolution, born roughly 50 years ago, was 
aimed at addressing precisely this concern. 

Experimental evolution, wherein laboratory populations 
are evolved in vitro, is an exercise in constraints: isolating 
variables to observe how simple experiments can lead to 
surprising insights about the mechanistic basis of evo
lution. The first serious incursion into the field was led 
by pioneers in microbial evolution. The Long-Term 
Evolution Experiment (LTEE), started in 1988 by Rich 
Lenski, aimed at testing the fundamental concepts of 
repeatability and parallelism in evolution [1]. It became 
the apotheosis of the ‘first era’ of experimental evolu
tion. Leading up to the 2000s, experiments explored the 
basic frameworks of evolution and shaped our under
standing of core evolutionary concepts that had so far 
only been theorized: fitness landscapes and trajectories  
[1–3], the dynamics of clonal interference [4,5], niche 
partitioning and specialization [6,7], and eco-evolu
tionary and host-pathogen dynamics [8–10]. Coupled 
with classical genetics, this work unraveled the genes 
and pathways relevant for adaptation in a wide variety of 
contexts and even led to an early appreciation of epis
tasis and pleiotropy [8,11,12]. 

By the early 2000s, experimental evolution saw a com
plete makeover thanks to next-generation sequencing 
and advances in molecular and synthetic biology. This 
‘second era’ was dominated by evolve and re-sequence 
experiments that allowed scientists to observe the dy
namics of genomic evolution in real-time [13–16]. Easier 
cloning across model organisms led to direct tests of 
evolved mutations in ancestral genetic backgrounds  
[17,18] and increasing computational power enabled 
sophisticated evolutionary simulations with ‘digital or
ganisms’ [19–22]. This era sharpened questions about 
how biological systems are continuously tuned during 
adaptation — evolution did not appear to be limited by 
lack of beneficial mutations. Improvements in genome 
engineering techniques paved the way to more complex 
experimental designs, which could now be coupled with 
problems that were previously only amenable to theo
retical treatments [23,24]. For instance, McDonald et al. 
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evolved populations with and without recombination  
[25,26], confirming theoretical predictions that sex pro
motes adaptation by both decoupling beneficial muta
tions from hitchhiking mutations and by alleviating the 
strength of clonal interference. 

Over the last few years, the portrait of organismal phy
siology and evolutionary trade-offs painted by experi
mental evolution has been remarkably comprehensive. 
We now have a framework to analyze a host of complex 
evolutionary phenomena. Epistasis, pleiotropy, quanti
tative trait loci, co-evolution, symbiosis, drift, and mu
tational biases have all been explored and codified, even 
if not fully understood. We stand the cusp of a new era in 
experimental evolution. With the recent explosion of 
modern high-throughput technologies, new biological 
and evolutionary mysteries can be specifically targeted 
and addressed. In this perspective, we begin by de
scribing novel technological developments that allow 
thousands of populations to be evolved in a wide array of 
complex evolutionary scenarios and their adaptation to 
be tracked at high resolution. We then highlight exciting 
open areas and challenges that are ripe for exploration 
and suggest ways in which new discoveries and synth
eses from the past decades can extend beyond the ex
plorative philosophy of the field. 

High-throughput genetics and evolution 
The use of liquid-handling automation 
Two major technical advances in experimental evolution 
relate to improvements in scale and complexity. As sta
tistical questions about evolution become more amen
able to experimental approaches, numbers of replicate 
cultures and the frequency of culture passaging have 
increased extensively. Key to this success has been the 

increased adoption of sophisticated liquid handling 
techniques. Once a suitable biological system has been 
constructed, the main task of all evolution experiments 
is controlled liquid handling. Passaging 12 lines in a 
simple environment for an extended time requires pa
tience and rigor (which is by no means an easy task) but 
passaging hundreds of lines in complex environments 
has made automation essential. The first generation of 
automation made use of either small-volume chemostats  
[27,28] or large liquid handling robots [16,29,30]. Ex
perimental throughput has improved dramatically 
thanks to the advent of these robots, allowing re
searchers to maintain thousands of cultures in multi-well 
plates with relative ease (Figure 1). 

One drawback of these first-generation approaches is the 
difficulty in performing complex evolutionary scenarios, 
such as cross-mixing of cultures across wells or non-tra
ditional transfer regimes. Thus, experimental evolution 
has traditionally not investigated anything that remotely 
approaches the environmental complexities of our world, 
sometimes bringing in question the relevance of the 
biological findings of the field [31] (though we note that 
evolution in agriculture and breeding has striking par
allels to studies in microbial experimental evolution  
[32]). Although it is possible to set up robotic arms to 
move plates from incubators to the deck and write pro
grams that account for short and varying transfer re
gimes, it is challenging and impractical to setup unless a 
lab is willing to dedicate a single machine for just one 
experiment, though there are success stories [33,34]. 
Recently, exciting developments in open-source milli
fluidics systems now allow parallel cultures to be main
tained in extremely complex scenarios [35]. These 
second-generation systems can manage dozens of 

Figure 1  
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Technological progress in culture maintenance. Microbial experimental evolution has improved from a single tube in a single environment to hundreds 
of tubes in complex environments. Modern millifluidics systems allow increased evolutionary complexity while also increasing throughput. 
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populations at modest population size with complex in- 
line changes in evolutionary environments, mixtures of 
independent cultures at precise volumes, and real-time 
tracking of growth rate, making them a key instrument 
in experimental evolution labs. 

Another recent development that has powered the 
second generation of automation in this area is the ad
vent of microfluidics and liquid droplet chemistry [36]. 
These systems can monitor hundreds of populations at 
minute population sizes (e.g. the mother machines [37]), 
which can investigate non-adaptive processes such as 
drift and mutational accumulation in exquisite detail and 
throughput. Liquid droplets, in a similar spirit, consist of 
few nanolitres that can encapsulate individual cells or 
enzymatic reactions and have revolutionized paralleli
zation of high-throughput experiments and pheno
typing. For instance, van Raay et al. performed an 
evolution experiment of E. coli within droplets where 
they selected for growth yield rather than growth rate, 
showing reversal of adaptation to an environment is 
possible [38]. 

Next-generation phenotyping 
With massively parallel population maintenance, the 
challenge moves to data collection and analysis. Two 
key recent innovations have made phenotyping drama
tically easier: 1) miniaturization and liquid-handling 
automation of enzymatic reactions involved in next- 
generation sequencing, and 2) the use of DNA barcodes 
for parallelized growth assays. With these strategies, 
analysis of evolving population has mostly kept pace 
with the increased throughput and complexity of culture 
maintenance. 

Currently, a single Novaseq lane can sequence ~105 

microbial genomes. This allows systematic evolve-and- 
resequence experiments for thousands of populations. 
However, the cost of sample preparation relative to the 
cost of sequencing remains high for most applications. 
The second era of experimental evolution saw the 
miniaturization and homebrewing of the genomic se
quencing process to reduce sample preparation cost to 
approximately 10$ per sample [39]. Coupling these 
strategies with liquid handling robotics reduced the cost 
even further: at less than 0.1$ per sample, Nguyen Ba 
et al sequenced the genomes of 100 000 yeast strains in a 
few weeks [40]. 

A challenge that is often underappreciated is measuring 
the phenotypic changes of evolving populations. Fitness 
measurements can be obtained through in-line growth 
rate sensors, or by competitive-fitness assays [41]. 
However, measuring the fitness of a few thousand strains 
using these methods is laborious, taking hours of analysis 
on a flow-cytometer or manual counting on agar plates. 
The defining phenotyping technology for the new era of 

experimental evolution has been the adoption of DNA 
barcodes. This technology allows simultaneous compe
titive fitness assays by tracking changes in barcode fre
quencies using next-generation sequencing (Figure 2)  
[42–44]. Recently, this technique was modified to allow 
repetitive barcoding allowing the tracking of evolution 
for extended periods of time at extremely high resolu
tion [45], while others leveraged targeted sequencing to 
observe the evolutionary potential in key loci [46,47]. 

High-throughput genetics 
Genotype-phenotype mapping is crucial to experimental 
evolution. Unfortunately, even in the genetically tract
able yeast, the ability to reintroduce genetic modifica
tions from an evolution experiment back into the 
ancestor can be limited, especially given the complex 
number of mutations accumulated during evolution. 
Implementation of new synthetic biology techniques 
that enable rapid introduction of mutations in ‘wild- 
type’ genomes solves this problem. These techniques 
include transposon mutagenesis [48,49] (usually coupled 
with the addition of barcodes for later phenotyping), 
automated Multiplex Automated Genomic Engineering  
[50], which use cycles of oligonucleotide mutagenesis, 
and CRISPR-Cas9 which allows genetic editing in many 
species and even within communities [51–53]. One 
breakthrough in understanding fitness landscapes came 
from improvements in in vitro cloning techniques, and 
particularly CRISPR-Cas9 gene drives and hierarchical 
mating that now allow systematic assembly of combi
natorically complete landscapes in vivo [54,55]. 

Open problems in the new era of experimental 
evolution 
The essence of experimental evolution has been re
plication in controlled laboratory studies. However, 
many of the big open questions in evolutionary biology 
lie in the realm of evolution in natural environments. 
While the first two eras of experimental evolution fo
cussed on basic questions about evolutionary dynamics 
in controlled settings, several recent evolution experi
ments have blurred the distinction between observing 
‘real-world’ evolution and observing ‘laboratory’ evolu
tion. Ground-breaking in this area has been the in
corporation of technologies and insight from 
experimental evolution. The similarities between in 
vitro and in vivo experiments are now stronger than ever. 

We note that it is still the dawn of in vivo evolution 
experiments, as we are capitalizing on tools and insights 
from in vitro experimental evolution. As the field de
velops, we expect a synergy will form where in vivo 
evolutionary studies will contribute to our understanding 
of core evolutionary principles (or to new technologies 
enabling more complex laboratory evolution), and this 
will feed back into further exciting areas. In this section, 
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we discuss how combining novel current era technolo
gies such as massively parallel barcoding, high- 
throughput robotics, and DNA/RNA sequencing with 
experimental evolution in more natural contexts has led 
to important insights in evolutionary biology, ecology, 
and human health, all of which offer a stunning array of 
ripe open questions amenable for investigation 
(Figure 3). 

Synthetic communities 
Most of the last 50 years of experimental evolution fo
cused on constraining the system to one species. Indeed, 
an unattributed but popular saying is that experimental 
evolution with two species is simply called ‘contamina
tion’. However, recent work in microbial ecology, cou
pled with our enhanced control over biological systems, 
has renewed interests in studying the evolutionary 

outcome and potential of biological communities. These 
studies are reviewed in depth elsewhere [56], as they 
range immensely from mutualism and co-evolution of 
yeast and bacteria to cross-kingdom interactions be
tween virus, algae, plants and fungi [57–61]. We high
light a few creative and original systems that are 
currently being explored. For instance, Goldford et al. 
assembled hundreds of naturally occurring soil bacteria 
in vitro and found their community assembly and within 
culture taxonomic variation to be highly predictable [62]. 
Bajic et al. showed that a community Flux Balance 
Analysis model was highly predictive of bacterial inter
action and community assembly [63], and more recently, 
Gowda et al. were able to use a consumer-resource 
model inferred solely from genome sequencing data to 
predict interaction modes between bacteria in a soil 
community [64]. Yet other work has focused on 

Figure 2  
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Technological progress in population phenotyping. With the increased throughput in culture maintenance, phenotyping throughput has kept pace by 
increasing phenotyping accuracy and by performing bulk measurements. However, bulk measurements are more challenging to establish for some 
complex phenotypes.   

Figure 3  
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Increased complexity of experimental evolution. As our handle on biological processes improves, experimental evolution is now exploring evolution of 
microbial communities in vitro but is also exploring evolving processes in vivo. Experimental evolution in natural settings has lower throughput but 
benefits strongly from the technological progress that was refined by in vitro experiments. 
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engineering communities based on single species (for 
example, mutualistic cross-feeding communities), which 
removes complications due to evolutionary divergence 
of species [65,66]. 

Evolutionary innovations and transitions 
Questions about evolution are deeply rooted in our fas
cination for the natural world. Evolutionary novelties, 
such as the emergence of multicellularity, en
dosymbiotic relationships, and novel genes have all re
cently been adopted as the focus of many experimental 
evolution studies, with many benefitting from high- 
throughput workflows. Some have looked at ecosystems 
in the real world that mimic the dynamics of experi
mental evolution systems [67–70], while others attempt 
to recreate it in the lab. For example, Ratcliffe et al. used 
a simple approach to select heavier yeast cells [71], 
which evolved yeast clusters that resembled snowflakes. 
Snowflake yeasts represent independent emerging 
multicellular ‘organisms’ whose evolution and properties 
can be studied in parallel. This and other carefully en
gineered systems have led to remarkable insight into 
how multicellular organisms might have evolved  
[72–76]. Similarly, Mehta et al. pioneered a system 
where they engineered auxotrophic E. coli cells to grow 
inside yeast cells lacking mitochondria [77,78], with the 
goal of studying the evolutionary dynamics of obligate 
endosymbionts in eukaryotes. Given the absence of 
ancestral fossils for microbial life, experimentally re
creating important evolutionary events in a variety of 
contexts is our only strategy to make sense of our past. 
Innovative selection pressures from a ‘naïve’ context 
allow scientists to probe the fundamental rules of life 
and evolution while controlling for confounding factors 
due to historical contingency, and thus, when accom
panied by new high-throughput tools, these experiments 
can provide an intimate and high-resolution view of 
previously unanswerable processes. 

Human health 
One very important extension of experimental evolution 
is the study of evolutionary dynamics of cells in the 
context of human health. Investigations into antibiotic 
resistance [79,80], the spread and evolution of infectious 
diseases [81,82], and the evolutionary dynamics of 
human microbiomes [83] are paramount to under
standing human health. Indeed, a renewed under
standing of human physiology and its tight coupling with 
the microbiome has emerged in recent years [84]. 

Gut and skin microbiomes offer an exciting avenue for 
exploration using tools developed from experimental 
evolution. These microbiomes offer constancy in terms 
of strain diversity, which allows for reproducibility and 
simplicity that has often been espoused by the field of 
in vitro experimental evolution. Moreover, spatial 
structure inside and on the body provides niches for 

hundreds of ‘independent’ populations simultaneously. 
By leveraging our abilities to observe evolutionary dy
namics in real time, longitudinal sequencing in the 
human gut has shown evidence for rapid adaptation and 
diversification in line with observations from evolution 
experiments [85]. Indeed, Lieberman et al. sampled 
the microbiomes of healthy humans over time and 
found evidence for negative frequency dependence 
and coexistence among gut inhabitants [86], dynamics 
that have been experimentally characterized in the 
LTEE. These evolutionary stories also extend to the 
skin microbiome, where pores act as islands, following 
the ecological rules of island biogeography [87,88]. Fi
nally, our understanding of founder effects and muta
tional biases from experimental evolution suggests that 
human microbiomes are seeded by a handful of starting 
strains, and that the community frequently turns over 
during the course of a lifetime [89]. Evidently, theory 
initially developed from observing the evolution of 
microbial populations have carried over. 

Another topic that has received tremendous attention in 
recent years is the eco-evolutionary dynamics in hos
t–pathogen interactions. Some studies have even looked 
at evolution on a global scale, with recent focus on HIV  
[90,91] and Covid19 [92]. The area of study is too broad 
for us to cover here, but one remarkable use of insights 
from experimental evolution has been in combinatorial 
phage therapy [93]. With the right phage and antibiotic 
combinations, evolutionary ‘dead-ends’ can be created 
by exploiting fundamental trade-offs discovered through 
simple laboratory evolve and re-sequence experiments  
[94,95]. Indeed, this has already been deployed in end- 
of-the-line situations [96]. 

The rapid spread of creative and complex model systems 
is pushing the boundaries of evolutionary dynamics. 
Evolution of cancer cells, and the drivers that mediate 
evolutionary pressures amongst them, has been gaining 
focus as cancerous cells eventually become resistant to 
therapies [97]. The predictability of this resistance is of 
immense importance for the care of patients, and similar 
attempts to measuring the evolutionary propensities of 
antibiotic resistance in a variety of bacterial systems has 
paved the way for similar experiments in cancer cells  
[98,99]. Similarly, modern DNA barcoding technologies 
developed in microbes are now being used in complex 
novel systems to track evolutionary dynamics and to study 
local interactions amongst cells. In a recent example, 
barcoded tumors in mice were used to study tumor pro
gression across different chemotherapeutics [54]. 

Outlook and conclusion 
The advent of modern technologies makes it tempting to 
follow the intellectual direction of the first two eras of 
experimental evolution: explore evolutionary space to see 
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the many surprises that drift and selection can together 
orchestrate from mere mutations. Yet, there is a new 
opportunity to shift gears towards focussed evolutionary 
questions and to take the road less traveled by. Thanks to 
explorers before us, we now have a solid foundation of 
molecular evolution and population genetics, and sy
nergistically combining past framework with massively 
parallel and high-throughput technologies will lead to 
new discoveries in underexplored areas. Judicious use of 
technologies and their subsequent improvements, com
bined with a solid understanding of evolutionary dy
namics and theory, will be crucial to gain insight amidst 
the fundamental limitations of throughput and com
plexity. We have provided a short but non-exhaustive 
summary of a few open areas in this perspective. 
Fundamentally, the intersection of experimental evolu
tion with these fields has the greatest potential for 
pushing the boundaries of evolutionary biology. 
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